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Abstract— The cancer stem cell hypothesis states that cancer growth is propelled by a relatively small number of cancer stem cells (CSCs).
These CSCs have been shown to play a crucial role in the growth and recurrence of many tumor types. The possibility that their elimination
becomes an efficient cancer control procedure has even led to new therapeutic paradigms. On the other hand, from their early stages, most
solid tumors grow in stressed environments. The stress field impacts on tumor evolution, and it is likely to affect different cancer cell
populations in different ways. It is therefore of great interest to determine the nature and strength of the interactions between CSCs and
differentiated tumor cells and how these interactions are affected by the mechanical properties of the environment. We have developed a
two-population mathematical model suitable to describe the initial stages of cancer growth and applied it to extract information from three
different experiments. Two of these experiments involve tumorspheres (spheroids resulting from the proliferation of a single CSC). In these
cases, the model validates the concept of CSC niche (the microenvironment responsible for signals that stimulate or inhibit CSC growth),
shows that interspecific interactions stimulate growth, while intraspecific interactions are generally inhibitory, and indicates how substrate
hardness modifies growth. In the third experiment analyzed, where stress-induced growth suppression was measured in multicellular tumor
spheroids, we were able to reconstruct the (unobserved) CSC fraction and found that medium rigidity eventually forces all cell interactions
to be competitive. We find that, under adverse environmental conditions the CSC fraction always remains nonzero. This lends support to the
hypothesis of the existence of the niche as a regulatory maintenance mechanism whose understanding will be crucial to the development of
a successful therapy based on CSC elimination.
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Resumen— La hipótesis de las células madre cancerosas afirma que el crecimiento del cáncer es promovido por un número relativamente
pequeño de células madre cancerosas (CSCs). Se ha demostrado que estas CSC juegan un papel crucial en el crecimiento y recurrencia de
muchos tipos de tumores. La posibilidad de que su eliminación se transforme en un procedimiento eficiente para el control del cáncer ha
conducido a nuevos paradigmas terapéuticos. Por otra parte, a partir de sus etapas iniciales la mayoría de los tumores sólidos crecen en
ambientes sujetos a tensiones mecánicas. El campo de tensiones afecta a la evolución del tumor y es probable que afecte en forma diferente
a las distintas poblaciones celulares. Es entonces de gran interés determinar la naturaleza e intensidad de las interacciones entre las CSC y
las células cancerosas diferenciadas del tumor y cómo estas interacciones son influidas por las propiedades mecánicas del ambiente. Hemos
desarrollado un modelo matemático de dos poblaciones, adecuado para describir las etapas iniciales del crecimiento del cáncer y lo hemos
aplicado para obtener información a partir de tres experimentos diferentes. Dos de estos experimentos fueron realizados con tumoresferas
(esferoides que resultan de la proliferación de una sola CSC). En estos casos, el modelo valida el concepto de nicho: el microambiente
responsable por las señales que estimulan o inhiben la reproducción de las CSC, muestra que las interacciones interespecíficas estimulan el
crecimiento, mientras que las interacciones intraespecíficas son generalmente inhibitorias, e indica cómo la rigidez del substrato modifica el
crecimiento. En el tercer experimento que analizamos, en el que fue medido cómo la presión aplicada suprime el crecimiento de esferoides
multicelulares, pudimos reconstruir la fracción de CSC (que no había sido medida) y encontramos que la rigidez del medio eventualmente
hace que todas las interacciones intercelulares sean competitivas. Encontramos también que bajo condiciones ambientales adversas la
fracción de CSC siempre es no nula. Estos resultados apoyan la hipótesis de la existencia del nicho como mecanismo de mantenimiento
regulatorio cuya dilucidación es esencial para el desarrollo de una terapia exitosa basada en la eliminación de las CSC.

Palabras clave—célula madre cancerosa, tumor, poblaciones, modelado de interacciones, substrato
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INTRODUCTION

T he obvious interest and complexity of cancer has led to
the formulation of numerous mathematical models of

tumor growth. Surveys of the state of the art in cancer mo-
deling have appeared at different times (Adam and Bellomo,
1997; Wodarz and Komarova, 2005; Tan and Hanin, 2008;
Lowengrub et al., 2009). The models range from the deter-
ministic differential equation descriptions (Murray, 2001) to
the cellular automata (Scalerandi et al., 1999), to stochastic
approaches (Tan and Hanin, 2008). The emergence of new
experimental techniques continuously imposes further cons-
traints on the growth models being developed. Multicellu-
lar tumor spheroids were developed to study the influence
of the microenvironment on the regulation of cell develop-
ment and viability (Freyer and Sutherland, 1986; Sutherland,
1988). Later, the identification of cancer stem cells in many
tumor types (Al-Hajj et al., 2003; O’Brien et al., 2007) led
to the formulation of the cancer stem cell hypothesis (Batlle
and Clevers, 2017), which states that a subpopulation of stem
cells drives cancer growth and may explain metastasis and
tumor recurrence after therapy. As a consequence, new the-
rapeutic paradigms have emerged, built on the idea of con-
trolling cancer through the destruction or incapacitation of
the CSCs (Jagust et al., 2019). Tumorspheres were develo-
ped as biological models to test the potential and weaknes-
ses of CSC – driven tumor growth (Weiswald et al., 2015).
They are spheroids grown from single-cell suspensions out
of permanent cell lines or tumor tissue. When cultivated in
a serum-free medium, they grow in a natural way, but their
environment can be tuned-up to study particular phenome-
nologies. By adding growth factors such as EGF and FGF-2,
the stem cells are forced to self-replicate without differentia-
ting. Another possibility is to grow the spheroids in agarose
gel to induce stress and examine how this stress modifies cell
behavior and proliferation.

Associated with a stem cell is the niche, the set of cells
and intercellular elements that provide the signals that define
stem cell behavior and maintain stemness (Scadden, 2014).
In the case of CSCs, the niche functionality is well known,
but its design and structure are still not precisely defined,
although its deregulation is certainly connected to the emer-
gence of tumorigenesis. The cross-talk between the CSCs
and their niches has now become a possible therapeutic target
(Taniguchi et al., 2020). Mechanical stresses are important to
the initiation and interpretation of the promoting and inhibi-
tory signals that the niche sends to the CSC (Cheng et al.,
2009). To shed light on the niche properties and on the ef-
fect of mechanical interactions, it is therefore important to
have a mathematical model to describe stem-cell-fueled tu-
morsphere growth. We stress the importance of having a sim-
ple mathematical model: Tumorsphere experiments are noto-
riously difficult, and they yield key but relatively scarce data.
Such sophisticated models as the one developed in (Scale-
randi et al., 2002) to explain the growth of tumor cords under
varying stresses are not useful to extract information of the
available tumorsphere data.

We have recently developed a two-population mathema-
tical model of tumor growth (Benítez et al., 2019, 2021),
which we used to interpret the results of tumorsphere
growth experiments performed under different mechanical

and growth factor conditions and to extract information about
the interaction between cancer stem cells and differentiated
cancer cells. We also obtain the evolution of the CSC frac-
tion, an important quantity which is in general not directly
accessible to the experiments. Here we review the model,
present its properties and applications, and indicate how to
apply it to interpret the results of tumorsphere and spheroid
growth experiments.

THE MATHEMATICAL MODEL

When a CSC undergoes mitosis, it may generate either two
CSCs with a probability ps, two differentiated cancer cells
(DCCs) with a probability pd , or one CSC and one differen-
tiated CSC, with a probability pa = 1� ps � pd . To describe
the interaction between the CSC and DCC populations we
must generalize the standard equations for competing species
to account for these three possible results of a CSC division.
Since it is in general not possible to discriminate between the
growth rates of the two populations, we will assume that all
cells divide at the same basal reproductive rate r. The inter-
actions between members of both populations will be quan-
tified by four coefficients ai j , which describe intraspecific
(i = j) and interspecific (i 6= j) interactions.

Let S(t) and D(t) be, respectively, the CSC and DCC po-
pulations at time t. Their evolution is then given by the follo-
wing pair of equations:

dS
dt

= r[psS]
⇢

ps � pd

ps
�aSSS�aSDD

�
, (1a)

dD
dt

= r[D+(1+ pd � ps)S]{1�aDDD�aDSS} . (1b)

Positive (negative) values of the coefficient ai j describe
the inhibition (promotion) of population i growth by the pre-
sence of population j, i.e. positive values of ai j correspond
to competitive interactions, while negative values represent
cooperation. The initial conditions for these equations de-
pend on the system of interest. In the case of a tumorsphe-
re, we start with a seed of a single cancer stem cell given by
S(0) = 1 and D(0) = 0, but other choices are possible.

Since our system of equations is designed to describe cell
populations, we should determine a positivity conditions for
its solutions. A sufficient condition may be obtained follo-
wing the method of Kirwa et al. (see Chen et al. (2016)), and
noting that in all systems of interest S(0)> 0 and D(0)� 0.
We thus have,

Theorem 1 Let S(t) and D(t) be continuous functions that
solve Eqs. (1), and satisfy S(0) > 0 and D(0) = 0. Then
aDS  0 is a sufficient condition for the positivity of S(t) and
D(t).

Proof: Given that S(0) > 0, for S(t) to become non-
positive for the first time at a t0 > 0, we must require that
S(t0) = 0 and S0(t0) < 0. But replacing these in Eq. (1a), we
arrive at a contradiction: while the left-hand side is negative
definite, the right-hand side is zero. Therefore, S(t) must be
positive for any finite times, without any conditions on the
model parameters.

To obtain the positivity condition for D(t), we note that a
sufficient condition for the initial growth of D(t) is aDS  0.
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In this case, there must be at least an interval (0, t1) where
D(t) > 0. If we now assume that t1 is the first positive time
for which D vanishes, D(t1) = 0, then D0(t1)< 0. Since r > 0
and S(t1) > 0, Eq. (1b) requires that [1�aDSS(t1)] < 0, a
condition that is never fulfilled because aDS  0. Thus, we
have again arrived at a contradiction and D(t) must remain
positive for all finite times.

The generalization of this theorem to the case D(0)> 0 is
straightforward and we will not go into the details here.

The condition aDS  0 is likely to be generally fulfilled be-
cause we expect the cancer stem cells to promote the growth
of the differentiated cells that make up their niche.

Initial size
A natural question for a biologist would be: If I want to

create a tumorsphere, what is the minimum size that should
be used to ensure growth? The answer to this question de-
pends on the influence of differentiation inhibitors, as we can
see by requiring that the time derivative S0(t) of the CMC
number be positive at the start of the experiment. From Eq.
(1a), we see that this is equivalent to demanding that the
initial seed size satisfy the inequality,

1�P�aSSS(0)> 0, (2)

where P = pd/ps. If aSS < 0 (the CMCs cooperate), this is
equivalent to,

S(0)>
P�1
|aSS|

. (3)

If P < 1, i.e. pd < ps, any value of S(0) (for instance, a
single cancer stem cell) will suffice to start a tumorsphere. If
on the other hand, P > 1, Eq. (3) provides us with a conve-
nient estimate for the seed size.

If aSS > 0, the CMCs inhibit each other, and Eq. (3) is
replaced by

S(0)<
1�P
aSS

. (4)

Because of the intraspecific competition, even if ps > pd ,
the number of cancer stem cells will initially decrease unless
Eq. (4) is satisfied.

To further investigate the mathematical properties of the
System (1), it is convenient to write it in a dimensionless
form. To do this, we will assume that aDD 6= 0. If we then
define the dimensionless time t = rt and the dimensionless
populations,

X = aDD(1� ps + pd)S, (5a)

Y = aDDD, (5b)

we obtain a set of dimensionless equations:

Ẋ = (P�AX �BY )X , (6a)

Ẏ = (1�CX �Y )(X +Y ), (6b)

where the dot signals a derivative with respect to t and we
have defined the new parameters

P = ps � pd , (7a)

A =
aSS

aDD

ps

1� ps + pd
, (7b)

B =
aSD

aDD
ps, (7c)

and

C =
aDS

aDD

1
1� ps + pd

. (7d)

We have already shown that the sufficient condition for the
positivity of the solutions to Eqs. (1) is that aDS  0. From
Eqs.(6) we see that X and Y will have the same (opposite)
signs than their dimensional counterparts if aDD > 0 (< 0).
Using Theorem 1 and Eq. (7d), we arrive at the following
corollary:

Corollary 1 The simultaneous satisfaction of the conditions
aDS  0 and aDD > 0 implies the positivity of X(t) and Y (t).
The single condition C  0 may be used instead.

Remark 1 In most cases, we expect cancer stem cells to
compete for space and resources, which would lead to aDD >
0. If they cooperate instead, aDD < 0 and the positivity of S(t)
and D(t) would imply the negativity of X(t) and Y (t).

Short-time behavior
Next, we investigate the short time behavior of system (6).

This is given by,

Theorem 2 If the system evolution starts at t = 0 from a
small mixed seed, such that X(0) = X0 > 0 and Y (0) = Y0
but AX0, CX0, BY0, and Y0 are all much smaller than one, the
representative point in the phase portrait of Eqs. (6) initially
moves upwards and to the right. If X0 = 0 but Y0 > 0, the
representative point moves straight towards the point (0,1).

Proof: Let us consider first the case X0 > 0. Under the
theorem assumptions, Eqs. (6) may be linearized. The expli-
cit solutions to the linearized form are easy to obtain. They
are

X(t) = X0 exp(Pt), (8a)

and

Y (t) =
✓

Y0 +
X0

1�P

◆
et � X0

1�P
ePt . (8b)

From these equations, we immediately find that the short-
time location of the representative point in the X �Y plane is
given by the equation

Y (t) =

Y0 +

X0

1�P

�
X(t)
X0

� 1
P
� X(t)

1�P
. (9)

Given that 0  P  1 and that X(t) > X(0) for all t > 0,
the trajectory will be initially controlled by the first term of
Eq. (9), starting as a curve that moves upwards and to the
right, as we wanted to prove. If X0 = 0, Eq. (6a) leads to
X(t) = 0, 8t > 0. Equation (6b) is therefore elementary to
integrate, yielding

Y (t) =
⇥
1+

�
Y�1

0 �1
�

exp(�t)
⇤�1

, (10)

an expression that is valid 8t > 0. Equation (10) tells us that
Y (t ! •) = 1 for any value of Y0.
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Figure 1: System evolution in the X �Y plane for growth starting
from a pure CSC seed when a mixed asymptotic population is

reachable. Trajectories are obtained by varying the parameter B.
Fixed parameter values: P = 0.5, A = 2, and C = 0.1. The red line

corresponds to the bifurcation condition B = P. Lines to its left
correspond to B > P and end at the stable coexistence fixed point

Q1 = (0,1). Lines to the right are obtained for B < P and end at the
stable coexistence point. The blue line corresponds to B = B̃ (see

text).

Fixed points and stability
The behavior of a cell colony can be studied by locating

the equilibria (fixed points) of system (6) and analyzing their
stability. The fixed points are determined by setting the right-
hand sides of Eqs. (6) equal to zero. Their stability is then
found by looking at the real parts of the eigenvalues l1 and
l2 of the Jacobian matrix,

J =

✓
P�2AX �By �BX

1�2CX � (1+C)Y 1� (1+C)X �2Y

◆
(11)

The fixed points Q j are:

The trivial point Q0 = (0,0), for which the eigenvalues
are l1 = 1 and l2 = P. This point is unstable if P > 0,
which is the most interesting case (cancer stem cells are
stimulated to divide symmetrically), and the colony will
grow. If P < 0, the origin is a saddle point.

The differentiated cancer cell point, Q1 = (0,1), whose
eigenvalues are l1 = �1 and l2 = P�B. This corres-
ponds to a stable equilibrium if P < B and is otherwise
a saddle point.

The coexistence point,

Q2 = (X⇤,Y ⇤) =
1
D
(P�B,A�PC), (12)

with D = A � BC. The corresponding eigenvalues are
too cumbersome for a direct interpretation, but extensi-
ve simulations confirm that Q2 is unstable when P < B,
which is the domain where Q1 is stable. There is the-
refore a transcritical bifurcation at P = B, where an ex-
change of stability occurs: a stable equilibrium such that
the system contains no cancer stem cells is found if
P < B, while a stable equilibrium where both popula-
tions coexist occurs for P > B.

Figure 2: System evolution in the X �Y plane for growth starting
from a pure CSC seed, when a mixed asymptotic population is not
reachable. Trajectories are obtained by varying the parameter B.

Fixed parameter values: P = 0.5, A = 0.1, and C = 1. The red line
corresponds to the bifurcation condition B = P. Lines to its left

(B > P) end at the stable fixed point at (0,1), while lines to its right
(B < P) end at the X axis. Q2 is never a stable fixed point. The

fixed points, located along the dashed line, are not stable.

The non-biological point Q3 = P
A�B (1,�1), for which

one of the two populations would be negative.

The fixed points in the X �Y plane are located on the
straight line Y ⇤ = 1�CX⇤. Since we generally expect aDD >
0 (differentiated cancer cells compete for resources), the sign
of the slope of the fixed-point line is determined by the sign
of aDS (see Eq. (7d). If CSCs promote the generation of new
differentiated cells (aDS < 0), an increase in the number of
CSCs in equilibrium would imply an increase of the num-
ber of differentiated cells. Conversely, if the CSCs inhibit the
creation of new differentiated cells (aDS > 0), an increase in
the number of CSCs in the equilibrium would imply fewer
DCCs there.

Figure 1 depicts the system trajectories in the X �Y pla-
ne starting from a small CSC seed, for the parameter va-
lues indicated in the figure caption. After an initial stage
where both populations increase in agreement with Theorem
2, we can identify three types of behavior: For B > P, all
trajectories converge to the differentiated cancer cell fixed
point Q1, which represents a stable tumorsphere that con-
tains no cancer stem cells. The transcritical bifurcation oc-
curs at B = P, where there is an exchange of stability bet-
ween Q1 and Q2, the last becoming the stable fixed point for
B < P. If P > B > B̃, where B̃ is determined numerically,
the populations go through a maximum, and then converge
to a B-dependent coexistence point. If B < B̃, the tumorsphe-
re grows monotonically towards the coexistence fixed point.
Since C < 0, the slope of the fixed-point line is positive.

If D < 0, but B > P and A < PC, the coexistence fixed
point is a saddle point located along the dashed line in the
first quadrant. This case is shown in Fig. 2, where a typical
value of Q2 is represented by a square symbol. The trajecto-
ries cross into the fourth quadrant, but biological evolution
ends on the X axis, which corresponds to a spheroid with no
differentiated cancer cells.
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Figure 3: Fit to the experimental data (dots) of (Chen et al., 2016)
to reconstruct the CSC population, which is given by the orange
line. The green line corresponds to the DCC population, and the

blue line is the fit to the total cell population.

THE MATHEMATICAL MODEL IN THE REAL
WORLD

As stated in the Introduction, the model can describe the
possible outcomes of a spheroid growth assay. To illustrate
the application of our results to experimental data, we selec-
ted three experiments designed to investigate very different
properties of a growing spheroid. The fitting parameters we
obtain are reported in Table 1 along with the predicted final
cell population and the expected CSC fraction. Note that the
spheroids final sizes, in the column labeled "Total", span five
orders of magnitude. We briefly discuss our interpretation of
these results bearing in mind that our main goal is to predict
the dynamics of the cancer stem cell fraction.

The first experiment we analyze corresponds to tu-
morsphere assays performed by Chen et al. (2016) starting
from three cancer cell lines. They found that, under suitable
growing conditions, the final CSC fraction is rather large. He-
re we report only results for the T47D breast cancer line, but a
more detailed account may be found in Benítez et al. (2019).
As seen in Fig. 3, the fitting agrees well with the data, and
allows us to reconstruct the evolution of the CSC population.
Growth stops after about fifteen days, as is usually observed,
leaving the final CSC fraction stable. By inspection of the co-
rresponding parameters in Table 1, we conclude that growth
is favored by the interspecific interactions. Stem cells pro-
mote the increase in the number of differentiated cells that
consolidate their niche, which leads to an initial decrease in
the CSC fraction (see Fig. 6). Although the location of the
cell population in the tumorsphere was not studied in the ex-
periment, it has been recently suggested (Barberis, 2021) that
the relatively high differentiation probability in combination
with the colony’s geometry helps the CSCs to build a DCC
shield around them. As expected, the coefficients aDD and
aSS are positive, confirming that cells in the same population
compete for resources.

The second experiment Wang et al. (2016) studied the
influence of the substrate on tumorsphere growth in CSC-
promoting media. Recently, we applied our model to this ex-
periment (Benítez et al., 2021). Here we report only the ca-
se of a “soft” substrate, in which cells were cultured using

Figure 4: Fit to the experimental data (dots) of (Wang et al., 2016)
to study tumorsphere growth on a soft substrate. The CSC

population (red line) is much larger than the DCC population
(green line).

0.05% agar as the contact matrix surface. Growth is slow at
first, being apparently driven only by the tendency to build
a suitable niche, hence the small basal growth rate (c.f. Ta-
ble 1). As a result, a slow exponential growth of CSCs pre-
vails in the early stages. As in the preceding example, the
CSCs attempt to generate niche-building DCCs, but, due to
the strong differentiation inhibition forced by the addition of
differentiation-inhibiting agents (note the high value of ps),
the CSCs are only occasionally able to generate a differentia-
ted cell. Thus, as shown in Fig. 4, the CSC fraction is close to
one with only a very slow decay. The signs of the coefficients
ai j again indicate interspecific cooperation and intraspecific
competition.

The third experiment is a classic (Helmlinger et al.,
1997). These researchers prepared culture media that indu-
ced increasing stresses on the growing tumor spheroids, sho-
wing that stress may be a strong growth inhibitor for tu-
mors. Although these experiments were satisfactorily descri-
bed using an allometry-based mathematical model (Delsanto
et al., 2004), no information was extracted about subpopula-
tions or the nature of the intercellular interactions. Now we
fitted their reported tumor sizes with our model and found
an interesting fact: the fit is not possible without the assum-
ption of the existence of at least one CSC to drive the tu-
mor growth. Here we report only our fit to the 0.3% aga-
rose concentration case, which corresponds to a relatively
low stress environment. As shown in Fig. 5, the DCCs form
an overwhelming majority of the cell population. We note
that this experiment was performed at a time when the can-
cer stem cells were little more than a conjecture. The finding
that those experiments must have been CSC-driven becomes
evident today, because the currently accepted biological de-
finition of a CSC states that it is a cell that can form a sphe-
re in a tumorsphere assay (the original paper indicates that
many cells were seeded but not all of them formed spheres).
The CSC fraction represented in Fig. 6 for this experiment
(green curve) shows that the pressure quickly kills the seed.
As a result, the final size of the spheroid is reduced respect
to the control one (not shown here), for which the CSC num-
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TABLE 1: PARAMETERS OBTAINED BY FITTING THE DATA FROM THREE VERY DIFFERENT TUMORPHERE ASSAYS.

aSS aSD aDS aDD r ps pd Total S
S+D

Chen 0.0519 -0.032816 -0.0175 0.020616 1.32 0.36 0.160 210 0.42
Wang 0.0844 -0.4082 -0.2005 0.483 0.07 0.969 0.004 7 0.92
Helmlinger 0.0202 0.000060 0.4007 0.000066 0.89 0.24 0.22 15178 0.00

Figure 5: Fit (green line) the experimental data (dots) of
(Helmlinger et al., 1917) for the total number of cells yields the
evolution of the CSC population (orange line). Cancer stem cells

cannot thrive due to the external pressure. Spheroids were grown in
0.3% agarose gels.

ber becomes constant after a brief transient. The last result
is consistent with the “control” experiment of Wang et al.
(2016), analyzed by us in Benítez et al. (2021), and with the
simulations reported in Barberis (2021).
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Figure 6: Time evolution of the CSCs fractions generated by our
model for the experiments described in Figs. 3 to 5. Environmental

factors alter the CSC fraction drastically.

CONCLUSION

The mathematical properties of a model for tumor sphe-
roid growth driven by cancer stem cells were discussed in
detail and illustrated through representative phase portraits.
The model was then shown to be able not only to reproduce
the extant data for tumorsphere growth (which usually co-
rrespond to whole populations), but to yield in each case the
cancer stem cell fraction, which had not been accessible to

the experimentalists.
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