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An algorithm for the identification of indicator taxonomic
units and their use in analyses of ecosystem state

Un algoritmo para la identificación de unidades taxonómicas
indicadoras y su uso en análisis del estado del ecosistemas

de la Vega Hernán1, Falco Liliana1,2, Saravia Leonardo3,4, Sandler Rosana2, Duhour Andrés1,5,
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Abstract—Biological community structure can be used as an ecological state descriptor, and the sensitivity of some taxonomic groups or
biological entities to environmental conditions allows for their use as ecological state indicators. This work describes an algorithm develo-
ped for the identification of such taxonomic units when comparing environments or ecosystems under different anthropic impacts. Based so-
lely on presence or absence information in a database, the algorithm identifies indicator taxonomic units for each environment, estimates the
belonging of any additional samples to a given environment, approximates the ecological niche of any taxonomic unit based on two or more
selected environmental factors, and analyzes the frequency of any taxonomic unit in a selected combination of the environmental factors
chosen. By using the approximation to the ecological niche of the taxonomic units present, given a new sample, the physicochemical para-
meters of the environment it was taken can be estimated by the units present in the sample. These analyses can be performed simultaneously
for two or more taxonomic units. This work provides a description of how the mathematical method was developed. Based on this methodo-
logy, a freely downloadable R package for easy use was developed, (Ecoindicators, DOI: https://github.com/lsaravia/EcoIndicators). One of
the advantages of this method, and the R-package mentioned is that it can be used for any ecosystem for which there is a suitable biological
dataset associated with environmental factors. In addition, both this mathematical procedure and the package referred to, can be tailored by
other researchers to fit their own needs.

Keywords—Anthropic Impact, Ecological Indices, Mathematical Ecology, Sustainability

Resumen— La estructura de una comunidad biológica puede usarse como un descriptor del estado ecológico, y la sensibilidad de algunos
grupos taxonómicos o entidades biológicas a las condiciones ambientales, permite que sean usados como indicadores de dicho estado.
Este trabajo describe el desarrollo de un algoritmo para la identificación de tales unidades taxonómicas al comparar ambientes o ecosiste-
mas bajo diferentes impactos antrópicos. Basado únicamente en información de presencia o ausencia en una base de datos, el algoritmo
identifica unidades taxonómicas indicadoras de cada ambiente, estima la pertenencia de cualquier muestra adicional a un ambiente da-
do, aproxima el nicho ecológico de cualquier unidad taxonómica con base en dos o más factores ambientales seleccionados y analiza la
frecuencia de cualquier unidad taxonómica en la combinación de los factores ambientales elegidos. Utilizando la aproximación al nicho
ecológico de las unidades taxonómicas presentes en la base de datos, dada una nueva muestra, se pueden estimar ciertos parámetros fi-
sicoquímicos del ambiente de donde provino tal muestra a partir de las especies presentes en la misma. Estos análisis se pueden realizar
simultáneamente para dos o más unidades taxonómicas. Este trabajo proporciona una descripción de cómo se desarrolló este procedimiento
matemático. Con base en la metodología aquí descripta, se desarrolló un paquete R de fácil descarga y uso gratuito (Ecoindicators, DOI:
https://github.com/lsaravia/EcoIndicators). Una de las ventajas de este método, y del paquete R mencionado, es que puede usarse para
cualquier ecosistema para el que exista un conjunto de datos biológicos adecuados asociados con factores ambientales. Además, tanto este
procedimiento matemático como el paquete al que se hace referencia, pueden ser adaptados por otros investigadores para que se ajusten a
sus propias necesidades.

Palabras clave—Impacto Antrópico, Índices Ecológicos, Ecología Matemática, Sustentabilidad
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AN ALGORITHM FOR THE IDENTIFICATION OF INDICATOR TAXONOMIC UNITS DE LA VEGA HERNÁN et al.

INTRODUCTION

T he development of biological indices of environmental
status as a tool to assess anthropic impact is increa-

singly used in many systems (Melo-Merino, 2020). These
biological status indices are well developed for aquatic envi-
ronments but their development for terrestrial environments
is still incipient (Guerra et al., 2021). The European Water
Framework Directive, for example, required that all surfa-
ce waters in Europe have biological indices of water qua-
lity by 2015 (European-Parliament, 2000). However, the de-
velopment of reliable ecological quality indices requires not
only the identification of those biological units considered to
be indicators, but also the development of objective metho-
dologies for the construction of such indices. A current cha-
racteristic of the development of these indices is the general
lack of standardized tools and methodologies for the objec-
tive selection of variables and for their construction (Velás-
quez et al., 2007). The purpose of this work is to advance
in the design of such unbiased tools and the methodologies
that can be used for the construction of ecological system
state indices. Thus, we designed an algorithm to classify the
most relevant characteristics of ecosystems and estimate the
values of parameters considered of interest, using the presen-
ce and absence of certain taxonomic units. Such units consi-
dered here as the biological entities of different taxonomic
hierarchy used in this work, from samples of the same sys-
tem. The work started from a database of soil samples that
contain measurements of physical and chemical parameters
as well as the presence and absence in each sample of dif-
ferent taxonomic units as defined above. The samples were
obtained over two years of sampling in sites of different in-
tensity of anthropic use of the same soil. The identification of
the different biological units that make up the edaphic bio-
ta, as well as their interactions and dynamics, are difficult
to assess due largely to the methods necessary for their ex-
traction and the small size of the individuals that compose
it. However, the information gradually collected over deca-
des, is reaching the point where it is becoming possible to
focus the work on the development of comparative studies
on the structure and functioning of the edaphic biota. These
studies will then make possible the analysis of the stability of
the interaction networks for evaluating the state of different
ecological systems (Fortin et al., 2021) or of the same system
under different intensities of anthropic impact (Potapov et al.,
2019). As a first step, certain taxonomic units were selected,
called here “indicators” that were then used (observing their
presence or absence) to estimate from which environment a
soil sample came. As a second step, the presence or absence
of such units was used to estimate values of some physical
and chemical parameters of interest. To carry out this task
in an automated way with different databases, an algorithm
was developed that allows to complete all these stages in a
single step. The first problem addressed was to determine,
when receiving new soil samples, to which environment they
correspond. The focus of interest in this part, was to make
this classification taking into account those units present or
absent, regardless of the values of the chemical and physical
parameters of the samples. With that aim, it was first sought
to distinguish “indicator units” that, through their presence
or absence, increase or decrease the probability that a sample

belongs to a specific environment. With this information, and
observing only those presences or absences in new soil sam-
ples, the algorithm estimates which environment they come
from and assigns a probability to that estimation. In the follo-
wing section this procedure is detailed and in the final section
a test is carried out with a database corresponding to a soil of
the rolling pampas (Buenos Aires, Argentina). A second ob-
jective consisted in relating the presence of taxonomic units
(indicator units) in the samples with the levels of certain phy-
sical and chemical parameters of interest. This problem was
tackled by describing the intersection of the ecological niches
sensu Hutchinson (1957) of the groups present with respect
to those parameters.

To this end, it was necessary to choose a simple calculation
to obtain an approximation of the niches. A “grid” of the ran-
ges of the physical and chemical parameters of the database
was built and then a “convex capsule” from a representati-
ve part of the existing cloud of biological data was adjusted.
This whole process is described in the last section. It is al-
so intended for the entire procedure to be written in a free
language known to researchers in the area, with the intention
that it can be tested by other professionals and improved by
other developers.

Methodology: construction of the algorithm step by step.

The database has the structure (Figure 1) in which the co-
lumns are completed with measurements of physical and che-
mical parameters and of the gross abundances for each taxo-
nomic unit present in each of the samples obtained from a
same type of soil with different intensities of anthropic im-
pact.

PROCEDURE FOR ESTIMATING A SAMPLE BE-
LONGING TO A GIVEN ENVIRONMENT

From the samples obtained from an experimental design
and reaching the laboratory, the assignment probability that
relates a sample to a particular environment is calculated.
This step, to calculate the probability of assignment, begins
by considering the presence / absence (Figure 2) of the taxo-
nomic units present in the sample.

As indicated above, the algorithm considers the presence
or absence of each taxonomic unit, therefore, the columns of
the taxonomic units obtained from the database are transfor-
med into a matrix of zeros and ones. In this first version, the
number of samples from each environment is required to be
the same. So, the first matrix obtained is:

2
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Figure 1: Database structure. The samples come from the same soil subjected to three different intensities of anthropic use (environment).
Each line contains the physicochemical data and the taxonomic units found in each sample.

Figure 2: Trimmed table, containing only information about the taxonomic units present or absent. Each row is a sample with the values
corresponding to the number of individuals of each taxonomic unit found in that sample.
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m

e2,1
1 · · · · · · · · · e2,1

m
...

...
e2,k

1 · · · · · · · · · e2,k
m

...
...

...
... · · · el,i

j . . .
...

...
...

...
en,1

1 · · · · · · · · · en,1
m

...
...

en,k
1 · · · · · · · · · en,k

m



Where the term el,i
j indicates if there were appearances of

the species j in i the sample l. More precisely:

el,i
j =


1, if there were appearances of the species

j in the sample i of the environment l

0, if there were no appearances

Selection of indicator unit

The idea that is being tested here is to measure the dif-
ference between the expected and observed values. As the
number of samples k corresponding to each of the environ-
ments n is the same, if the appearance of each taxonomic unit
j were independent of the environments, it would be expec-
ted that the proportion of appearances of each taxonomic unit
in each environment was uniform. To specify the latter, let‘s
take a taxonomic unit j and add its occurrences in the envi-
ronment l, then add all its occurrences in the database, take
the quotient between the two and call that number Ol

j that is:

Ol
j =

∑
k
i=1 el,i

j

∑
n
l=1 ∑

k
i=1 el,i

j

were Ol
j gives the proportion of appearances observed, with

3
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respect to the total of appearances of the unit j, in the envi-
ronment l.

If the unit j were independent of the different environ-
ments, would be expected then that it your occurrence Ol

j be
approximately 1

n the same for each environment l = 1, . . . ,n
this is (O1

j
∼= O2

j
∼= . . .∼= On

j
∼= 1

n ).

We call E l
j this expected value and we have that E l

j =
1
n for

l = 1 . . .n and j = 1 . . .m. We test the hypothesis

O1
j = O2

j = . . .= On
j =

1
n with a standard Hypothesis Test

using the Chi-square distribution χ2 by:

χ
2 =

n

∑
l=1

(
Ol

j −E l
j

)2

E l
j

=
n

∑
l=1

(
Ol

j − 1
n

)2

1
n

If the value exceeds the threshold given by α = 0,05, the
hypothesis is rejected and it is considered that the occurren-
ces of that taxonomic unit vary between environments.

Units whose distribution is not uniform with respect to
the environments are called Indicator Units, and are those
in which their occurrences are not independent of the envi-
ronments being considered. A number r of indicator units is
thus obtained E j1 ,E j2 , . . . ,E jr . It is through their appearances
or absences the procedure seeks to determine the belonging
of a new sample to a certain environment.

To visualize this, the algorithm generates a graph with the
distributions of each unit in each environment and indicates
the number of total occurrences of each one in the database
(see Figure 6). This last datum is considered in the calcula-
tion above so as not to use units that appeared only a few
times to be of significance in the analysis.

Environment estimation

Once the Indicator Units have been obtained, we seek
to determine which particular environment it belongs to.
Specifically, the negation of the Null Hypothesis test (with
al pha = 0,05): "the observed proportion of that unit in that
environment is 1

n ïs used to construct the D matrix based on
the differences between the expected value E l

j and the obser-
ved occurrence rate Ol

j, so that each d1
j1 is equal to Ol

js −
1
n

D =



d1
j1 · · · · · · · · · d1

jm
...

...
...

... · · · dl
js · · ·

...
...

...
...

dn
j1 · · · · · · · · · dn

jm



where

dl
js =



Ol
js −

1
n , if the test found a difference

significant between the proportion
of observed partitions of the
indicator species js in the
environment l with respect to what
expected ( 1

n )

0, if the test found no significant
differences

The rationale is that these coefficients dl
js , before the ap-

pearance of a unit in a sample js, add or subtract probabilities
(or neither of those two things) that this new sample belongs
to a certain environment. For instance, suppose there are th-
ree different environments and the algorithm has selected two
indicator units. Furthermore, assume that the proportions of
occurrences of each indicator unit in each environment with
respect to its total occurrences (the values Ol

js ), were:

Indicator unit 1 Indicator unit 2
Environment 1 0.35 0.10
Environment 2 0.60 0.62
Environment 3 0.05 0.28

Suppose additionally that the tests carried out on each
unit in each environment to see if the observed proportions
deviate from those expected (which in this case would be
1
3
∼= 0,33) gives a negative value for Indicator Unit 1 in En-

vironment 1 and for Indicator Unit 2 in Environment 1. En-
vironment 3, then the array of values dl

js would be (rounding
the values):

Indicator unit 1 Indicator unit 2
Environment 1 0 -0.23
Environment 2 0.27 0.29
Environment 3 -0.28 0

where that 0 of Indicator Unit 1 in Environment 1 indica-
tes that the test did not find a significant difference between
what was observed and what was expected, and that 0,27 f
Indicator Unit 1 in Environment 2 indicates that the test did
find a significant difference. The algorithm then takes that
difference d2

1 = O2
1 −E2

1 = O2
1 −

1
3 = 0,60− 1

3
∼= 0,27, and

repeats the procedure with the other values of the matrix. A
concrete example of the construction of this matrix is given
in Figure 7 of last section.

As stated before, the idea is that these numbers add or sub-
tract probabilities that a sample belongs to a certain environ-
ment. For example, if Indicator Unit 1 appears in a new sam-
ple, Environment 2 will add 0.27 points to the probability
of that sample belonging to that environment while Environ-
ment 3 would subtract 0.28 points.

The way the procedure uses that information is as follows.
Suppose that a number q of new samples are received, all
from the same environment, an environment that the proce-
dure seeks to identify. To continue with the previous example
(with three Environments and two Indicating Units) suppose

4
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that we receive four samples in which the following quan-
tities of each Indicating Unit are recorded in each Environ-
ment:

Indicator unit 1 Indicator unit 2
Sample 1 0 5
Sample 2 3 20
Sample 3 0 30
Sample 4 8 10

The matrix is again translated so that it only contains pre-
sences and absences

Indicator unit 1 Indicator unit 2
Sample 1 0 1
Sample 2 1 1
Sample 3 0 1
Sample 4 1 1

Preserving the subscripts that have been used for the indi-
cator units, this matrix would then have the form:

M =



M1
j1 · · · · · · · · · M1

jm
...

...
...

... · · · Mh
js · · ·

...
...

...
...

Mq
j1

· · · · · · · · · Mq
jm


where

Mh
js =

{
1, if indicator unit js appears in sample h
0, if no appareances of that unit were registered

A vector of occurrences of the samples is then built that
contains, in each coordinate, several of the samples received
where there were occurrences of each unit:

A =

(
q

∑
h=1

Mh
j1 , . . . . . . ,

q

∑
h=1

Mh
jm

)
In the example provided it would be

A = (0+1+0+1,1+1+1+1) = (2,4)

Then the values of the matrix D should be added, (which
increase or decrease the chances of belonging to a certain
environment) according to the number of samples in which
there were appearances of each Unit. It is then calculated
R = A.Dt that it is the product between the matrix (the vec-
tor) A nd the transpose of the matrix D. In the example:

R=(2,4) .
(

0 0,27 −0,28
−0,23 0,29 0

)
=(−0,92,1,7,−0,56)

Each coordinate of the vector R corresponds to one of the
environments, in the example:

Environmen 1 Environmen 2 Environmen 3
( −0,92 , 1,7 , −0,56 )

The largest of these coordinates indicates the environment
the procedure is looking for. That is, the procedure considers
that the set of samples corresponds to the environment who-
se coordinate has the highest value in the vector R. In the
example it corresponds to Environment 2.

Estimations validation

Even before receiving new samples of the system, it is of
great interest to test the operation of the algorithm. One stra-
tegy for this is to take the original database and take some
random samples from it from the same environment, as if
they were new samples, run the algorithm and verify if it is
correct in the prediction, errs in the prediction or it is not able
to give an answer regarding which environment the samples
belong to. Let‘s go back to the matrix E. The rows in this ma-
trix contain all the samples in the database and in each of the
lines there are zeros or ones according to whether or not there
are occurrences of each unit in the base. Here, the algorithm
separates this matrix into three sub-matrices containing each
of the samples from a single environment, as:

E1 =

 e1,1
1 · · · e1,1

m
...

...
e1,k

1 · · · e1,k
m

 , E2 =

 e2,1
1 · · · e2,1

m
...

...
e2,k

1 · · · e2,k
m

 ,

. . . . . . . . . ,En =

 en,1
1 · · · en,1

m
...

...
en,k

1 · · · en,k
m


The algorithm now randomly chooses one of these matri-

ces and a random sample from that matrix, runs the process
as if it were a new sample and determines if it was correct
in the prediction, erred in the prediction or could not give a
prediction. It repeats this process n times and calculates the
percentage of hits, misses, and no prediction results. Subse-
quently, it repeats the process described above, but this time
taking two samples from each environment (instead of one).
Then it takes three samples from each environment and so
on up to thirty samples from each environment or the ma-
ximum possible if the database does not contain that many
samples per environment. The algorithm then returns three
graphs (hits, misses and no prediction) displaying the pre-
vious calculations, which gives an idea of the accuracy of the
predictions. In the example shown in last section the resulting
graphs are shown for the example given here (Figure 8).

ESTIMATION OF PHYSICAL AND CHEMICAL
PARAMETERS FROM THE UNITS PRESENT

When trying to link biological, physical and chemical da-
ta, several problems immediately appear, some of them quite
obvious: The number of variables is usually very large and
the necessary computing power exceeds the capacity of the
available resources. The choice of the way forward becomes
difficult if one wants to simplify the problem.

Niche approximation

For its practical application, the interest is usually focused
on relating only a limited number of physical and chemical
parameters with only some of the units. Thus, we select a
quantity “c“ of physical and chemical parameters that here
are called “p1, p2, . . . , pc“ and a taxonomic unit “e“. If in a
sample of the database there is an occurrence of the unit “e“,
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Figure 3: The entire point cloud according to[
maxp1 ,minp1

]
×
[
maxp2 ,minp2

]
× . . .×

[
maxpc ,minpc

]
a vector (v1,v2, . . . ,vc) can be built with the values registered
in that sample of the parameters “p1, p2, . . . , pc“. Performing
this task for all samples in which there is an occurrence of
the unit taxonomic “e“,we obtain a çloud.of points in space
Rc.

In the cases c = 1,2,3 that point cloud can be graphed.
Now let’s take the ranges in which each parameter of in-

terest moves, in this way we obtain for each parameter “p j“
a value “maxp j “ and a value “minp j “ with which a "hyper-
cubeïs constructed that contains the entire point cloud that
represents the presence of the taxonomic unit “e“.

The hypercube containing the total point cloud for the ta-
xonomic unit e can be segmented by choosing a number d
that will divide each interval

[
minp j ,maxp j

]
obtaining

smaller hypercubes called dc in which c is the number of se-
lected physical-chemical parameters and d is the number of
times each number of the physical-chemical parameters will
be divided in. The choice of these values will be subject to
the computing power of the computers and can be selected
based on the researcher’s criteria.

In the case c = 3, of the three-dimensional case shown,
there are many algorithms capable of constructing the “con-
vex capsule” of the point cloud as a way to approximate the
niche of the species with respect to the three particular para-
meters chosen.

The point cloud can be observed within different squares
(figure 4) of resolution d representing the hypercubes dc. The
number of occurrences of the taxonomic unit e in each hy-
percube dc is recorded to obtain a "fit"value from the point
cloud.

Parameter estimation

Point clouds for the occurrence of two taxonomic units ta-
king into account the same physicochemical parameters, co-
occur in a few hypercubes (figure 5). Then the intervals can
be limited under observation of the physicochemical parame-
ters. The algorithm distinguishes the hypercubes where there
were appearances of the taxonomic units by collecting and
ordering the information. Hypercubes are labeled by dc

Here we tried two different approaches:
In the first one, for each taxonomic unit, the occurrence

number for each hypercube is obtained. An “occurrence” ma-
trix is created that shows the number of occurrences of each
unit in each cube. In this matrix, the rows m are the database

Figure 4: Different resolutions of the point cloud according to the
size of the cells or grid resolution.

samples and the columns are the hypercubes dc, so each va-
lue ai, j indicates the number of samples in which the unit i
appears in the j cube.

This matrix is tedious to calculate and requires time. For
this reason, the algorithm exports the matrix obtained as a
csv file and later reads the values directly from that file. The
algorithm, on the one hand, returns which taxonomic units
appear in a sample and in which hypercube dc they are found.

On the other hand, given a number of taxonomic units then

6
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Figure 5: Superposition of the cloud of points corresponding to
two taxonomic units and a grid that represents hypercubes dc. The

shaded area corresponds to the hypercubes in which the joint
appearance of both taxonomic units occurs.

it returns the samples, from the database, in which all those
taxonomic units appear at the same time and in which cubes
they appear. Also, given a number of taxonomic units, it re-
turns how many times all those units appear together in each
cube. Each of the described steps are used to create a fun-
ction that returns the hypercubes where the taxonomic units
occur and the probability of being in a certain cube (knowing
that all those units appeared in that sample).

As a second approach, m vectors are created (one for each
species) of dc coordinates (one for each cube). Each one of
these vectors, contains either a 1 if that particular species
appears at least once in a given cube, or a 0 if it never ap-
peared in that cube. These vectors are easier to calculate than
the matrix “appearance” described above, because it contains
less information. These approach saves processing time and
computer resources, but some other calculations cannot be
performed this way.

If we then choose a certain number of species and want
to visualize in which cubes they appear together, we only
need to obtain the product, coordinate by coordinate, of the
vectors of each species, and look in which coordinate each
species appear a 1.

INDICATOR UNITS WITHIN THE GRID

Indicator units are characterized by appearing more in cer-
tain environments than in others (Dufrêne and Legendre,
1997). Proceeding as in the previous section, those physi-
cochemical parameters of interest are chosen and the corres-
ponding grid is made, with which more information can be
obtained on how the difference between the expected and ob-
served proportion of the units in each environment occurs. If
we observe one indicator unit within the grid, the difference
between the expected and the observed proportions in each
cube can be calculated, which allows to visualize cubes (or
“zones”, sets of cubes) where the difference is greater. To do
this:

A function is created that indicates the number of times
and the percentage in which each cube appears in each envi-
ronment.

The number of times and the percentage in which each cu-

be appears in the entire database is calculated (without dis-
criminating between environments).

With the above data, a matrix is built that has in each row
the number of times each cube appears in each environment
and in total.

Given a unit, the number and percentage of occurrences
in each cube discriminated by environment are recorded (the
number and percentage of occurrences in each cube having
already been calculated without discriminating by environ-
ment).

With the previous data, a matrix is constructed that in each
row shows the number of occurrences of the unit in each cu-
be, discriminated by environment and in total.

The next step is to build a matrix called “Projections” that
shows an estimate of how many times the unit should appear
in each cube in each environment, assuming that its appea-
rances were independent of the environment. Specifically, if
we call:

ci, j to the number of times the cube appears i in the en-
vironment j

ai to the number of appearances of the unit in the cube i
in total (without discriminating by environment)

ci to the number of times the cube appears i in total
(without discriminating by environment)

then the Projection matrix has in place the (i, j) value

ci, j .ai

ci

as an estimate of the number of times the unit should appear
in the cube i in the environment j

The difference between the last two matrices is then cal-
culated, and shows the difference between the observed and
the expected appearances of the unit in question in each cube
and in each environment. This difference is also calculated
as a percentage. These differences are displayed using histo-
grams. This visualization becomes more relevant as long as
the number of cubes is not too large.

A CONCRETE EXAMPLE OF HOW THE ALGO-
RITHM WORKS

Example of Environment Estimation.

This section shows a concrete example of the use of the
described process and the calculations and results obtained
for that case. The database used in this example corresponds
to a soil from the Pampean plain (Buenos Aires, Argenti-
na). Each sample in this database collects measurements of
fifteen physical and chemical parameters and the presence
or absence of forty-three taxonomic units. The database has
216 samples in total corresponding to three different environ-
ments (72 samples from each environment). Environment 1
corresponds to a naturalized grassland (NG), Environment 2
to a grazing field that shifted to agriculture two years before
the start of the samplings (CG), and Environment 3 is an en-
vironment of continuous intensive agriculture for at least 40
years (AG). The procedure begins with the selection of the
indicator units, for them the matrices described in the section

7
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“Selection of indicator unit” are calculated. Here (see Figure
6) the graph is shown where the difference between the ob-
served and expected occurrences expressed as percentages is
observed. In this case, as there are three environments, the
value of the expected proportions (if the units were indepen-
dent of them) is 1

n = 1
3 and it is represented by a horizontal

line.
The procedure goes as in the section “Environment Esti-

mation” and a coefficient matrix D:

rho par vei eup Mic Euk
NG 0,00 −0,33 0,00 −0,22 0,42 −0,33
CG −0,22 0,66 −0,33 −0,33 −0,28 0,66
AG 0,24 −0,33 0,29 0,55 −0,14 −0,33

rho = rhodacaroidea par = parasitoidea
vei = veigaioidea eup = euphthiracaroidea
Mic = Micdub Euk = Euker

Now suppose that samples of the same type of soil were re-
ceived but about their environments (or management) we do
not know, and this process is used to determine which envi-
ronment/management they belong to. As described in section
“Environment Estimation”, we take the coordinates corres-
ponding to the indicator units and they are replaced by 0 if
there were no occurrences of the units in that sample and 1 if
there were. Then:

rho par vei eup Mic Euk
Sample 1 0 0 0 0 1 0
Sample 2 1 0 1 0 0 0
Sample 3 0 0 1 0 1 0

For instance, sample numbers 27, 35, and 36 of the database
give these results and all three belong to the same NG envi-
ronment.

The values of the samples are added:

rho par vei eup Mic Euk
Sum 1 0 2 0 2 0

The product between this last vector is then carried out with
the transpose of the matrix D:

(
1 0 2 0 2 0

)
.


0 −0,22 0,24

−0,33 0,66 −0,33
0 −0,33 0,29

−0,22 −0,33 0,55
0,42 −0,28 −0,14

−0,33 0,66 −0,33

=

=
(

0,84 −1,44 0,54
)

That is:

NG CG AG
0,84 −1,44 0,54

As the largest of the numbers corresponds to the NG envi-
ronment, it is concluded that the samples come from that en-
vironment.

In this case, the prediction coincides with the actual origin
of the samples. As described in section “Estimations vali-
dation”, this process was carried out several times with one
sample, with two samples, with three samples, and so on. The
percentages of hits, misses, and times in which the algorithm
cannot decide which environment the set of received samples
belongs to are then calculated. The percentages are shown in
Figure 7.

Example of Estimation of parameters from the units
present.

In this example, the physical-chemical parameters that ha-
ve been chosen (Sandler, 2019) were P, OM and N. It can
be observed that the minimum and maximum values recor-
ded for P are 0.00 and 75.78; those corresponding to OM are
1.51 y 9.2, and those of N are 0.14 and 0.51. Each of these
ranges is divided into 3 parts (d=3) and a “grid” formed by
27 cubes is obtained as shown in Figure 8.

From the observation of the appearances of each unit
within the grid, the procedure goes as described in section
“Parameter estimation”.

For example, the simultaneous appearance of the units
Onychiuridae, Isotomidae, Eupodoidea and Aporos is detec-
ted only in samples that appear in the cube delimited by
0,00 ≤ P < 25,26, 4,08 ≤ Mo < 6,66 y 0,26 ≤ N < 0,39
(Figure 10).

The simultaneous appearance of the units "Hypogastruri-
dae", Çrotoniodea", and “Juveniles” is only detected in sam-
ples that appear in the cube delimited by 0,00 ≤ P < 25,26,
4,08 ≤ Mo < 6,66 and 0,14 ≤ N < 0,26 in the cube de-
limited by 0,00 ≤ P < 25,26, 4,08 ≤ Mo < 6,66 and
0,26 ≤ N < 0,39. Joining both cubes it can then be deter-
mined a zone of simultaneous appearances is delimited by
0,00≤P< 25,26, 4,08≤Mo< 6,66 and 0,14≤N < 0,39
(Figure 11).

Example of Indicator units within the grid

Let‘s now take the parameters P, Mo y N as in the previous
subsection and build the same division into cubes. Let us also
take the indicator unit Rhodacaroidea and compare its distri-
bution in each cube in each environment with the expected
distribution if the appearances of the unit were independent
of the different environments.

The three graphs that are in the upper part of Figure 12
show how many times that unit appears in each cube and
in each environment (cubes numbered here from 1 to 27).
The three graphs in the lower part show how many times it
should appear under the hypothesis of independence of envi-
ronments.

It can be seen in Figure 6 that the unit Rhodacaroidea
(with the number 7) appears more frequently than expected
(which in the example is 33 percent) in environment 3 (envi-
ronment AG), less frequently than expected in environment
2 (CG) and with the frequency expected in environment 1
(NG). These differences between what is observed and what
is expected can be found in some aspects of Figure 12. It
can be seen, for example, that in the cubes that appear with
the numbers 1, 4, and 5, there is a marked difference upwards
(between expected and observed) in the AG environment and
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Figure 6: All taxonomic units labeled with numbers are shown. Total number of occurrences of the tagged taxonomic units. The vertical
axis represents the rate of occurrence of a taxonomic unit, the limit 0.33 is the expected value E l

j. Vertical dotted lines are those indicator
species. Environments are represented by colors. Environment 1 = black Environment 2 = red Environment 3 = green. The units selected

as indicators are Rhodacaroidea; Parasitoidea; Veigaioidea; Euphthiracaroidea; Microscolex dubius; Eukerria stagnalis.

It shows the observed proportions in each environment, and they are represented by color dots.

a marked difference downwards in the CG environment.

CONCLUSIONS

Although this method was originally developed using a
soil biota database (Sandler, 2019), it will work just the
same in any other environment or ecosystem for which
there is a suitable database of biological entities, associated
with an environmental dataset. The algorithms developed
and put together in this new method not only allow for the
identification of indicator taxonomic units (depending on
the taxonomic resolution available to the user), but also
to approximate their ecological niches and, given a new
sample, to estimate the physicochemical parameters of
the site according of the species present in that sample.
One of the main advantages of this method is that it can

be used for any ecological system for which there is a
suitable biological dataset associated to environmental
factors. Another useful feature, is that it requires only
presence/absence data. Researchers that also have density
data, can modify and improve the method by tailoring it to
their datasets. Thus, we feel that this contribution will be of
interest for researchers developing indicators of ecosystem
state. Moreover, the entire procedure was then converted
to “Ecoindicators” Duhour et al. (2021), an R package
that performs all the required tasks. The package (DOI:
https://github.com/lsaravia/EcoIndicators) is free to use and
to be improved by any researcher, with proper citation.
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Figure 7: Percentages of hits, no-decisions, and misses calculated.

Figure 8: Cube built with Nitrogen (N), Phosphorous (P), and
Organic matter (OM) environmental factors.

Figure 9: Cube built with N, P, and OM, showing the presence of
the Onychiuridae taxon in a grid of the environmental variables N,

P and OM.

Figure 10: Simultaneous occurrence of taxonomic units
Onychiuridae, Isotomidae, Eupodoidea and Aporos.

Figure 11: Simultaneous occurrence of taxonomic units
Hypogastruridae, Crotoniodea, and Juveniles.
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Figure 12: Observed (upper panels) and expected (lower panels) occurrence of unit Rhodacaroidea in the three environments being
compared. Natural grassland (NG), Cattle grazing (CG), and Agriculture (AG).
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Abstract—In the analysis of anthropogenic impact on the environment arises the question of whether the shapes of preserved habitat
fragments play an important role in the conservation of wild species. In this work we use a very simple mathematical model based on a
reaction-diffusion equation to analyze the effects of geometric shape and area on the permanence of populations in habitat fragments. Our
results indicate that a dimensionless quantity calculated from a combination of biological variables is the main component that determines
if the species survives in the preserved fragment and whether its geometric shape is important. We provide a methodology to calculate
critical area sizes for which population size is most affected by fragment shape. The methodology is illustrated in a preliminary study, in
which the model is used to estimate threshold area sizes for habitat fragments of a threatened species Sapajus xanthosternos.

Keywords—Area, Conservation, Fragment, Geometric Shape, Mathematical Model, Threshold.

Resumen—En el análisis del impacto antrópico sobre el medio ambiente surge la pregunta de si las formas de los fragmentos de hábitat
conservados juegan un papel importante en la conservación de las especies silvestres. En este trabajo utilizamos un modelo matemático
muy simple basado en una ecuación de reacción-difusión para analizar los efectos de la forma geométrica y el área sobre la permanencia de
poblaciones en fragmentos de hábitat. Nuestros resultados indican que una cantidad adimensional calculada a partir de una combinación de
variables biológicas es el componente principal que determina si la especie sobrevive en el fragmento preservado y si su forma geométrica
es importante. Proporcionamos una metodología para calcular los tamaños de áreas críticas para las cuales el tamaño de la población se ve
más afectado por la forma de los fragmentos. La metodología se ilustra mediante un estudio preliminar, en el que el modelo se utiliza para
estimar el tamaño del área límite de los fragmentos de hábitat para la manutención de la especies amenazada, Sapajus xantosternos

Palabras clave— Área, Conservación, Fragmento, Forma geométrica, Modelo matemático.

INTRODUCTION

L andscape ecology studies traditionally use landscape
pattern indices, a.k.a landscape metrics, to predict eco-

logical responses, they are mostly associated to patch size,
shape and habitat amount and aggregation (Gustafson, 2019).
Detailed ecological research on patch-scale alterations on
biodiversity were never as relevant, considering that half of

the forests of the planet are less than 500 m from the fo-
rest edge, and mostly are patches smaller than 10 ha (Haddad
et al., 2015). Moreover, habitat fragmentation, isolation and
creation of edge environments initiate long-term responses of
organisms and ecosystems processes that percolate through
the landscape (Haddad et al., 2015).

The edge of forests may be a barrier to animal movements
(Tuff et al., 2016; Boesing et al., 2018), thus, the area and
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shape of forest patches are appropriate metrics to assess the
effects of spatiotemporal changes in the landscape configu-
ration over biodiversity measures, such as, species richness,
community structure and organisms’ abundance (Ramalho
et al., 2014; Han et al., 2019). These alterations in landscape
patterns are also used as predictors of ecological processes,
namely the probability of population extinctions and migra-
tions (Xu et al., 2014).

Recently, a vivid debate on the importance of considering
several spatial scales to assess the changes in biodiversity
has arisen and most studies indicate that scale selection is
species-sensitive (Moraga et al., 2019). It is well-known that
anthropogenic and natural landscape alterations dispropor-
tionately impact forest-core species, which are almost four
times more prone to extinction than edge-tolerant and habi-
tat generalist species (Pfeifer et al., 2017). Accordingly, it has
been shown that forest-core species are vulnerable to hunting
and predation when moving through non-forest habitats, and
that abundance of forest-core animals is consistently larger
at about 400 m away from the edge, confirming that edge
effects operate at a small spatial scale (Pfeifer et al., 2017).

The impacts of edge effects on populations of forest-
dependent species are influenced by the ratio of forest core
in relation to forest edge. Thus, edge effects are strongly re-
lated to the shape of forest fragments, but they are less inten-
sive in the core of larger forests fragments (Nogueira et al.,
2021; Banks-Leite et al., 2010). Forest-core species are more
strongly affected in small forest fragments with convoluted
shapes (Ewers and Didham, 2008; Banks-Leite et al., 2010).
The population abundance of these forest species tend to de-
cline under edge effects and ultimately increase the risk of
local extinction (Pfeifer et al., 2017).

Traditional approaches in landscape ecology use diversity
measures, such as species richness and equitability, to explo-
re how changes in habitat structure and landscape configura-
tion may lead to species loss, alterations in the animal com-
munity composition, and biodiversity erosion (Watling et al.,
2020). Fewer landscape ecology studies address the influen-
ce of those landscape modifications on population dynamics.
Here we use population dynamics models (partial differential
equations) to understand the population vulnerabilities asso-
ciated to changes in the spatial configuration of forest pat-
ches. This approach allows us to study the link between the
spatial configuration of the habitat and the population dyna-
mics (Nabe-Nielsen et al., 2010).

The mathematical model used in the present work may be
included in the broad class of KISS models (Cantrell and
Cosner, 1994) and, although some discussion has already
been developed on the theme of critical patch size (Cantrell
and Cosner, 2001), many of the results can be computed ex-
plicitly only when applied to patches with a relatively simple
geometry. Our analysis uses a different approach, which is
based on numerical simulations over a wide variety of geo-
metrical shapes and the use of field data to fit the model pa-
rameters. Combining the strong theoretical results present in
Cantrell and Cosner (2001) with field data and precise nume-
rical simulations is a work reserved for the future.

The paper is subdivided in three other essential sections
besides this introduction. In the section “Material and Met-
hods" we present the model, the biological hypotheses and
parameters, and quickly review some metrics of fragment

shape. In the section “Results" we deduce general ecologi-
cal results from the model and illustrate its application in a
particular preliminary study directed to a particular species
(Sapajus xanthosternos). Finally, in the conclusion section
we discuss some of the general and particular results, deli-
neating also directions for future research.

MATERIALS AND METHODS

The model

The main focus of this paper is to deduce conditions in
which the shape of a habitat fragment does have a significant
impact on the chances of conservation of a certain species
that occupies it. Since this question is quite general, we are
immediately caught in a tension, trying to avoid two oppo-
sing dangers: oversimplification of biological traits and na-
rrowness of results due to an excessive number of hypothe-
ses.

For the particular model used in this work, each species
may be represented by a combination of five basic biological
parameters: the time it would take a population to be dou-
bled under the most favorable conditions (Tr in time units),
the carrying capacity in an undisturbed/preserved environ-
ment (K in number individuals per area unit), the time that
it would be necessary for the population to be halved in a
disturbed/hostile environment (Tm in time units), a disper-
sion coefficient (D units of area per unit of time) and a non-
dimensional coefficient of mobility (η) that identifies if in-
dividuals tend to disperse faster or slower in the disturbed
environment when compared to its movement in the preser-
ved areas.

Of course, under many aspects, this is an oversimplifica-
tion of any biological species, but here we argue for this ap-
proach, underlying the following points:

1. If our objective is to gain insight, from a broad perspec-
tive, on the effects of shape and area size on the survival
of species, we cannot rely on detailed dynamics which
are species-dependent.

2. This generality allows for an easier application in spe-
cific cases, requiring just a few biological parameters to
adequately apply the methodology outlined by the mo-
del. Detailed models often require the estimation of a
much higher number of parameters, many of which may
demand intricate experiments to be successfully deter-
mined.

3. As long as the model and methodology is not conside-
red as an absolute tool and is used only as a guideline
to provide rough estimates of threshold area sizes, there
should be no harm in approximating the complex popu-
lation dynamics of the real populations for the simpli-
fied one presented here.

It is worth to mention that the model is effective in illus-
trating the importance of the relations between certain sca-
les that are connected with mobility, reproduction rates and
area of the fragment. In this sense, the model should provide
some insight from the perspective of ecological theory and
conservation, going beyond the simple applications of statis-
tical methods of analysis, which, of course, have their own
importance and scope.
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The biological hypotheses

In the process of mathematical modeling it is important to
clarify the biological hypotheses assumed so that we know
exactly what is included and what is not in the dynamics pre-
sented by the model. The main assumptions considered in
our model are enumerated below:

1. The model describes the dynamics of one particular spe-
cies at a time. No interspecific relations are modeled.

2. The region to be analyzed can be divided into two
clearly different landscapes. One represents a preserved
and favorable environment to the species while the other
corresponds to a hostile ambient, where the population
could be sustained only for an definite amount of time
(extinction is unavoidable in the hostile ambient).

3. Within the preserved environment the species grows lo-
gistically up to a carrying capacity.

4. In the hostile ambient the population decays exponen-
tially.

5. Individuals are forced to move around in the environ-
ment in both types of landscapes, either due to over-
population forces, foraging or other species-dependent
factors. The particular details are not taken into account
in the model, instead, those forces are represented by
two parameters, one for movement in the preserved re-
gion and other for the hostile one.

The first hypothesis simply means that we are not expli-
citly describing complex ecological relations between spe-
cies. These relations, of course, are very important in the real
biological system and may be the decisive factor between the
survival or the extinction of a particular population. In our
approach, those relations are “embedded” in the form of the
division of the region in a preserved or hostile environment.
In the preserved region, all the ecological relations necessary
for the survival of the population are present while in the
hostile region those conditions are absent. In this way, the
analysis can be focused in just one species.

The second hypotheses is related to a very frequent occu-
rrence in the study of anthropogenic impact on wild popula-
tions. In many instances is is possible to observe a “natural”
landscape, where wild populations reproduce and a “distur-
bed” one, that has been modified to serve another purpose,
for instance, raising of cattle or agriculture (Gollnow et al.,
2018). Although the biological hypotheses do not explicitly
account for a continuous transition between those types of
environment, in the sense that each location is either clas-
sified as “preserved” or “disturbed”, the mathematical for-
mulation does provide a certain smoothness in the transition
from one scenario to the other. In this type of model, popu-
lations that live closer to the transition frontier tend to repro-
duce, on average, slower than those in more “interior” areas.

Referring to the third hypothesis, although some species
tend to conform to the specific form of Logistic growth (Bar-
low, 1992), in our model, this particular form of dynamics is
used just to represent the factual observation that every po-
pulation has its growth limited to the natural resources avai-
lable. In this case, those are supposed to be directly propor-
tional to the size of the preserved area. Similar models with

analogous limited-growth functions (a generalized Logistic
model was used (Tsoularis and Wallace, 2002) ) were tested
and very close results were obtained, providing some eviden-
ce that our analysis is independent of the particular choice of
a Logistic growth function, but rather that the fundamental
fact is the limited carrying capacity of the environment.

The fourth hypothesis accounts for mortality in the hostile
environment. It can be proved (Tijms, 2003) that if each in-
dividual has a fixed probability of dying per time unit then
the dynamics of the whole population can be approximated
by an exponential decay. The important factor here is that the
species is tending to extinction in the hostile environment.

The last hypothesis involves the dispersion of the indivi-
duals. Animal movement is an extremely complex topic and
many factors do contribute to the observed movement pattern
at the population level. When enough data is available, pre-
cise mathematical models can be fitted to describe complex
inter and intra-specific interactions that affect movement. In
particular, Moorcroft et al. (2006) have successfully used a
reaction-diffusion equation to model wolf pack territory for-
mation in Yellowstone Park, being able to closely fit the mo-
del to empirical data on population distributions. Due to its
generality, the model we propose is much less detailed and
we do not expect such model to precisely describe the mi-
croscopic individual movement dynamics. Instead, we rely
on a macroscopic parameter, the diffusion (or dispersion)
coefficient, to represent a general tendency of dispersion,
whatever is the particular biological mechanics behind it.
Particular population estimates in well-known regions may
then be used to fit the dispersion coefficient, avoiding the
need of intricate empiric research on the movement pattern
of the modeled species (see the Case Study Section for furt-
her details).

Finally, there is the observation that individuals may mo-
ve at different speeds depending if they are in a preserved
or hostile area. While the precise estimation of such diffe-
rence may be subject to technical difficulties, we find this as-
sumption necessary, given the generality of the model, which
could be applied to many different species and terrains. In
Section “Sensitivity Analysis" we show that parameter η ,
which is related to this difference in movement, is a para-
meter that does not have a very strong impact on the equi-
librium population. Since the results are fairly robust to this
factor, the model may still be applicable even if it is not pos-
sible to estimate precisely the difference in mobility between
hostile and preserved areas.

The variables and the simulation space

The dynamics proposed occurs in a three-dimensional spa-
ce (R3), having two Cartesian coordinates, (x,y) ∈ R2, for
the spatial distribution and another one for time, t ∈ R. The
population is then described by a density function u(x,y, t),
so if Ω⊂R2 represents a fragment, P(Ω) =

∫∫
Ω

u(x,y, t) dxdy
is the total population in it the fragment at time instant t. The
dimensions of x and y are compatible with length (kilome-
ter, mile, meter), while u may be expressed in individuals per
area using convenient units of population and area compati-
ble with x and y (thousands, hundreds for population; square
meters, miles or kilometers for area). The time variable may
be measured in years, months or other useful scale.
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The domain of simulation was chosen as a rectangular set
L= [a,b]× [c,d]. Each point inside the domain was classified
as being either favorable to the species (preserved habitat) or
hostile to it (impacted environment). We defined Ω ⊂ L as
the set that represents the fragment of preserved habitat while
L−Ω stands for the hostile environment. Figure 1 illustrates
an example of this type of separation.

The reaction-diffusion equation

Reaction–diffusion models are applied to the study of a
wide variety of natural systems. Pattern formation in ani-
mal coats (Murray, 1989), spatial distribution of slime molds
and formation of galaxies (Lin and Segel, 1988), ecological
invasion by alien species (Shigesada and Kawasaki, 1997),
chemical signalization in insects (Bonabeau et al., 1999) and
even evolutionary phenomena (Assis et al., 2018) are some
examples of applications. For an excellent review of its use
in Mathematical Ecology, we indicate the book by Okubo
and Levin (2001).

To model the population dynamics in L, we propose the
following equations:

∂u
∂ t

=

{
div(D∇u)+ ru(1−u/K) if (x,y) ∈Ω

div(DH∇u)−µu if (x,y) ∈ L−Ω
(1)

where D and DH are the dispersion coefficients in the pre-
served habitat and the hostile environment, respectively, r is
the per capita reproduction rate in the habitat, µ is the per
capita mortality rate in the hostile environment and K is the
carrying capacity in the preserved habitat.

The dynamics is separated in two regions, Ω and L−Ω.
The first term in both equations represents the mobility of
the population in each environment, so the ratio η = DH/D
indicates where the movement is faster, if η > 1 individuals
move faster in the hostile environment while η < 1 means
the opposite.

The use of a diffusion equation to incorporate the characte-
ristics of complex movement patterns may be criticized as an
oversimplification. While it is true that this type of equation
may be deduced in many different ways (Perthame, 2007),
a common misconception is to think that it can only repre-
sent Brownian motion, that is, the movement displayed by
particles randomly colliding and moving in every direction.
One way to interpret differently this equation is to suppose
that, in microscopic scale, individuals carefully avoid over-
crowded regions, moving in the direction of less populated
areas in a velocity that is proportional to the stimulus given
by the Weber-Fechner law (Laming, 1989). Under such as-
sumptions, the resulting macroscopic dynamics is exactly a
diffusion equation[1].

This can be seen by simply writing the term corresponding
to the flux of individuals,~z = D∇u as~z = Du~v, where

~v =
∇u
u

; u 6= 0.

The biological interpretation is clear now: individuals mo-
ve on the opposite direction of the gradient, but with a a

1This interpretation came to our knowledge through personal communi-
cation with Prof. Wilson Castro Ferreira Jr. Up to date we are not aware of
any publication that treats this topic in detail

speed/probability that is proportional to the ratio of the con-
centration difference perceived and the concentration of in-
dividuals. This ratio incorporates the effect described by the
Weber-Fechner law, that the perception of changes in the in-
tensity of stimuli is relative to the total present stimulation.
Just to give a simple concrete example of this psychophysical
law: a match lighted in total darkness provides a much hig-
her stimulus than one lighted in plain daylight. So the model
can be interpreted as implying that the population is trying to
avoid overcrowded areas, moving in the opposite direction of
increasing population density. Although the Weber-Fechner
is not an “absolute” natural law and has been subject to criti-
cism and also that alternatives formulations have been propo-
sed for modeling stimuli perception (Krueger, 1989; Nutter
and Esker, 2006), recent results seen to find new evidence
supporting it (Dehaene, 2003). In any case, here it serves the
purpose of illustrating how the diffusion equation may be re-
interpreted as portraying a more complex behavior than just
Brownian motion.

As stated in a previous section, the domain of the equation
is L = [a,b]× [c,d]. This choice of domain was made for the
following reasons:

1. A rectangular domain facilitates the implementation of
numerical methods to solve the differential equation.

2. The domain is chosen in a way so that it included that
fragment of interest (Ω) and that the boundary condi-
tions do not have a significant impact on the results.

The boundary conditions for the mathematical problems
may be homogeneous Dirichilet conditions:

u|
∂L = 0 (2)

where ∂L stands for the boundary of L. Another possibility
is to use the Robin homogeneous condition is given by:

∂u
∂n

∣∣∣∣
∂L

= kru (3)

where ∂u/∂n is the normal derivative (pointing outwards re-
gion L) and kr > 0 is a constant that defines the intensity of
the flux.

Homogeneous Dirichilet conditions imply that individuals
die at the boundaries while Robin homogeneous conditions
represents a migration that is proportional to the population
density at boundaries We will not stress too much the role
of the boundary conditions because the focus of the model
is to analyze the effect of the geometric shape and area of
Ω. The domain L, in this case is just a convenient choice
that allows for an easier numerical simulation. We tested our
results using both conditions and a variety of values for k and
the results were very similar, independently of the boundary
conditions used..

One last technical observation on the model is that the-
re is a discontinuity in the diffusion coefficient. This is not
a relevant modeling problem for our particular case since,
in this work, the solution of the differential equation is ap-
proximated using a discretized version of the domain, where
discontinuities are not an issue.

15



WHEN SHAPE MATTERS RAUL ABREU DE ASSIS et al.

a) Lb)

∂L

u(x,y, t)

Preserved Environment (Ω)

Hostile Environment (L−Ω)

Figure 1: The image used in this example is merely illustrative. a) Rectangular satellite image of a preserved environment and surrounded
by a hostile environment. The geographical coordinates (12◦0′49,60′′S 55◦24′29,35′′W ) belong to the highlighted region. Source: Google

Earth. b) The domain of the model is a rectangular box L that includes a region of preserved environment represented by Ω and the
complementary region L−Ω that stands for the hostile environment.The population is described by a density function u≡ u(x,y, t) that

depends on the position in a two-dimensional space, (x,y) and a time variable t. The boundary of the domain is denoted by ∂L and is
composed only of the four sides of the rectangle L.

Numerical methods

To simulate the model we first divided the domain L into
the two regions Ω and L−Ω and, observing that D and DH
are constant, obtained the two partial differential equations:

∂u
∂ t

= D∆u+ ru(1−u/K), x ∈Ω (4)

and
∂u
∂ t

= DH∆u−µu, x ∈ L−Ω (5)

where ∆ stands for the two-dimensional Laplacian operator.
To approximate the solution of those equations, we adop-

ted a finite-difference scheme (centered, second order) for
the spatial Laplacian operator (∆) and Runge-Kutta methods
of combined orders 2 and 3 to solve the resulting system of
ordinary differential equations. The application of these met-
hods is considered routine in numerical analysis and can be
consulted, for example, in Burden and Faires (2010).

To implement such numerical schemes we used two soft-
wares: Matlab R2016b (registered for academic use under
license number 1115837) and the open source Scilab (ver-
sion 6.1.0). Two independent teams worked on the codes,
each using a different software for comparison of results and
avoidance of coding errors. For the Runge-Kutta methods
we used the built-in functions provided by both softwares:
ode23 for Matlab and ode (with method option rk") for Sci-
lab.

Estimates for r, µ and η

The model uses five mathematical parameters to simulate
the dynamics: r, µ , K, D and DH . To estimate those parame-

ters, we need some biological estimates, as mentioned in the
Section “The model":

1. Tr: supposing the conditions are very favorable to the
population (resource abundance, low competition), Tr is
the time the population takes to double its numbers.

2. Tm: supposing the whole region was transformed into a
hostile environment, Tm is how long would it take for
the population to be halved.

3. η : if we denote by d the average daily displacement of
individuals in the preserved habitat and dH in the hostile
environment, then η may be interpreted as an estimate
of dH/d. Here the time scale of one day was mentio-
ned, but it can be adapted according to the biological
convenience.

The exact method for providing those estimates are left
to the expert biologists for each case. From these three
biological parameters and some population estimates
in known areas and a least squares fit it is possible to
estimate the remaining parameters (K and D). Further
ahead in this paper we provide a case study as a guideline.

Parameter r: From the estimate of Tr, and taking into
account that, for populations that are small relative to the
carrying capacity, the Logistic growth can be approximated
by a Malthusian one, we obtain r as:

r =
ln(2)

Tr
(6)

Parameter µ: Since the population decays exponentially on
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the hostile environment, the instantaneous rate of decay µ

can be directly obtained from the estimate Tm:

µ =
ln(2)
Tm

(7)

Measures of compactness

One of the central questions approached in this paper is
to evaluate how important fragment shape is to the conserva-
tion of populations. To conduct a mathematical analysis we
need, then, some measure of “compactness” that can be used
to represent the characteristics of a certain shape, so that its
impact on population can be quantified. A discussion of the
roles of such measures and a review of some particular for-
mulas can be consulted in Li et al. Li et al. (2013). Other aut-
hors (Rutledge, 2003; McGarigal et al., 2012) present also
some shape measures commonly used in landscape ecology
analysis. Below, we briefly review some of the measures and
choose which suits best the scope of this work.

If Ω is the two-dimensional set that represents the frag-
ment we denote by p(Ω) as the perimeter (we suppose that
the boundary of Ω can be described as a smooth function)
and a(Ω) its area.

McGarigal et al. (2012)[p.104] present two of the most
common measures of compactness, PARA:

PARA =
p
a

(8)

and a Shape Index (SHAPE):

SHAPE =
0,25p√

a
. (9)

Another possible measure is the IPQ (Osserman, 1978), gi-
ven by:

GEIPQ =
4πa
p2 . (10)

The measure given by PARA is not convenient because it
is scale-dependent, so it was not adopted in this work. SHA-
PE is not dependent on scales and it is directly related to the
IPQ.

In the IPQ measure a circle has the maximum measure of
compactness value of 1. The intuition is simple, as the pe-
rimeter increases for the same area, the measure decreases,
resulting in a value between 0 and 1. The use of the square
of the perimeter avoids the impact of scaling factors (units of
length), resulting in a reliable measure. To make the results
more intuitive, we use the acronym GE to stand for “geome-
tric efficiency” as the measure of compactness.

Here we propose a slight modification of the IPQ, using
for the measure of compactness the following formula:

GE =
16a
p2 . (11)

The change is only a re-scaling of IPQ but, in our simula-
tions, the discretization of the domain causes the regions to
be transformed into a union of small squares, which also af-
fects the length of its perimeter and, to a minor degree, its

area. Due to this slight deformation of regions, we find it
useful to use the square as the reference figure instead of the
circle. In this measure, the square has a compactness measure
of value 1.

SHAPE is directly related to GE:

SHAPE =
1√
GE

. (12)

so any results obtained in terms of GE can be easily converted
to SHAPE and vice-versa.

RESULTS

This section divided in two parts. The first is dedicated to
general results and the second to a case study of the species
Sapajus xanthosternos.

General results

For a clearer presentation, we separated the general results
into three further sections. First, the combination of parame-
ters that are important to the simulations are identified, then
a sensitivity analysis is performed and finally the impact of
geometric shape on species population is discussed.

Identifying the key parameters

Before we addressed the question relative to the impact of
geometric shape of a fragment on populations, it was impor-
tant to analyze the role of the parameters when shape was
fixed. We chose a fragment as a circle and used six parame-
ters to simulate the model: At (total area of the fragment),
r (per capita reproduction rate in the preserved habitat), K
(carrying capacity), µ (per capita mortality rate in the hosti-
le environment), η (mobility coefficient) and D (dispersion
coefficient).

Each simulation was conducted for a time limit of 100Tr,
that is, if the population is doubled in a year under the most
favorable conditions, then the model was simulated for 100
years. For each simulation, we evaluated the total final popu-
lation PΩ(At ,r,µ,K,D) and then re-scaled it according to the
maximum possible population PMAX = At ·K, obtaining:

P∗ =
PΩ

PMAX
. (13)

This re-scaling provides an estimate of the border effects on
the fragment. For instance, if P∗ = 0,8, this implies that the
influence of the outside hostile environment causes a decrea-
se of 20% of the maximum potential population in the frag-
ment.

By simulating the model it was possible to obtain the re-
scaled population as a function: P∗(At ,r,µ,K,D) and we
used this relation to study how the parameters affected the
survival of the species. Allowing all parameters to vary in
each simulation, the trend was not clear P∗ when we looked
individually at parameters At , r, µ , η or D, while parameter
K had no impact at all in P∗. Instead, we found that P∗ is
dependent on the non-dimensional groupings:

α =

√
Atr
D

λ =
µ

r

(14)
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and the non-dimensional parameter η .
To illustrate such dependency, we chose three different va-

lues of λ (1/10, 1 and 10) and for each value of λ , the follo-
wing distributions for the other parameters was chosen:

At ∼U (0,25,3), D∼U (0,001,0,25)
r ∼U (0,25,1,4), η ∼U (0,5,2) (15)

where U (a,b),a,b ∈ R stand for a uniform distribution bet-
ween a and b. Note that once r and D are established, µ and
DH are automatically determined by the relations µ = λ r and
DH = ηD.

These intervals were conveniently chosen to illustrate the
relations and similar results are obtained with other intervals
that comprise a similar spectrum for α . It is worth to stress
that since α , λ and η are non-dimensional, they are not affec-
ted by the choice of units used to describe population density.
A total of 250 random combination of parameters was chosen
for each fixed value of λ . In Figure 2 we present illustrations
of how P∗ behaves in relation to some of the parameters, this
illustrates the important role of λ and α . The results were
robust to the choice of both initial and boundary conditions.

Another way to analyze the impact of the parameter is to
measure the correlation between the parameters and P∗. In
Table 1 we present the Spearman coefficient Kendall (1948)
of correlation for the parameters and the variable P∗. The
results confirm that α is the most important factor in the de-
termination of P∗.

Another way of deriving the importance of α , λ and η

is to write a non-dimensional version of the model. By de-
fining new non-dimensional variables as w = x/

√
D/r, v =

y/
√

D/r, τ = rt and h = u/K, model 1 is transformed to:

∂h
∂τ

=


∂ 2h
∂w2 +

∂ 2h
∂v2 +h(1−h) if (w,v) ∈ Ω̄

η

(
∂ 2h
∂w2 +

∂ 2h
∂v2

)
−λh if (w,v) ∈ Ω̄ ∈ L̄− Ω̄

(16)
where L̄ and Ω̄ are transformations of the domain L and the
fragment region Ω to (w,v) mapping. For the particular case
of the simulations in this section, Ω was taken as a circle of
area At having a radius of R =

√
At/π , so the transformed

region Ω̄ is a circle of radius R̄ = R/
√

D/r =
√

Atr/(Dπ).
Re-arranging the terms, we obtain:

R̄ =
1√
π

√
Atr
D

=
α√
π
. (17)

Equations 16 and 17 show that the behavior of the non-
dimensional model (which is independent of scaling) de-
pends only on the non-dimensional groupings η , λ and α

(which shall be called parameters henceforth).
The results of both the simulations and the dimensional

analysis show clearly that parameters α and λ are essential
to the survival of the species. These results are biologically
intuitive: α2 is proportional to both At and r, meaning lar-
ger areas and fast reproduction rates favor the survival of
the species (hence the positive correlations between α and
P∗). Also, α2 inversely proportional to D, meaning that lar-
ge mobility associated with a hostile surrounding environ-
ment impacts negatively the population. Parameter λ indica-
tes how hostile is the environment outside the environment,

being proportional to µ and inversely proportional to r, with
more hostile environments leading to lower populations. Pa-
rameter η had a smaller influence on the final results, as can
be seen in the curves in Figure 2-d), for each fixed curve with
fixed λ , η was allowed to vary between 0,5 and 2, with little
impact on the final re-scaled population P∗ which was also
confirmed by the analysis of the correlation coefficients in
Table 1.

To analyze the relative impact of parameters α , λ and η

we performed a sensitivity analysis of model 16, presented
in the section below.

Sensitivity analysis

In this section we consider P∗ as a function of α , λ and
η . The simulations are analogous to the ones in Figure 2.
We chose the shape of the fragment as a circle (with radius
given by Equation 17), taking all parameters with the same
distribution:

α ∼ λ ∼ η ∼U (0,05,20). (18)

To evaluate the sensitivity we used the slopes of the direct
one-dimensional regressions (P∗ × α , P∗ × λ and P∗ × η ,
from the multilinear regression (P∗ = aα +bλ +cη +d), the
standardized regression coefficients and the Spearman coef-
ficient. In Table 2 we display the results of the analysis. They
clearly confirm the strong influence of parameter α , with λ

and η playing a secondary role.

The impact of geometric shape

In the previous sections it was clearly established that α

and λ are key parameters that define species survival in the
model. The simulations indicated that, for each fixed λ , it is
possible to divide the region of variation of α in three quite
distinct regions. For very low values of α , the population is
unable to survive, with P∗→ 0. For very high values, boun-
dary effects have little impact on the dynamics, so P∗ ≈ 1
with the population approaching the maximum value possi-
ble. Finally, there is an intermediate region where P∗ makes
a transition between those extreme values, and in this region,
the population total is strongly related to the effect of geome-
tric shape.

For very large or very small values of α , geometric shape
in unimportant, because either the area size is too big or too
small in relation to the scales of reproduction and mobility
(which is the measure that parameter α incorporates). In the
intermediate region the geometric shape plays crucial role in
determining how strong is the boundary effect, which may
lead either to extinction or preservation.

The central problem analyzed in this paper can now be ad-
dressed as a very precise question: for each point in the two-
dimensional parameter space (α,λ ), is it possible to deter-
mine if geometric shape affects significantly the population
estimates by the model? To answer this question we desig-
ned procedures do create random shapes and also to deform
a preexisting shape, affecting its measure of compactness (as
defined in the Section “Measures of Compactness").

For each point in the (α,λ ) map we took an initial geome-
tric shape for the region Ω, which we defined as S0. This
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Figure 2: Seven hundred and fifty simulations of P∗ = PΩ/PMAX, the re-scaled population inside Ω. Parameters r (per capita
reproduction rate), η (mobility outside the fragment), At (fragment area) and D (dispersion coefficient) were allowed to vary randomly

according to the distributions given in Equation 15. a) Results of P∗ in relation with At , the behavior is strongly dependent on the values of
the other parameters. b) Results of P∗ in relation with r. c) Results of P∗ in relation with D. d) Results of P∗ in relation with α , for each

value of λ , a clear trend can be observed, indicating that α and λ are key parameters to the survival of the species in the fragment.

shape had a total area equal to α2 to correspond to a di-
mensional simulation of a figure of area At and a initial
GE, G0 = GE(S0) larger than 0,65, to allow for variation.
By applying deformations on this initial shape we genera-
ted a set of 30 other shapes, S1, . . . ,S30, with the same area
but with compactness measures G1,G2, . . . ,G30 in the set
(0,05 ·G0,G0). In the appendix we discuss in more detail the
methods used to create deformations of the initial figure as
to obtain shapes with smaller compactness values GE. This
process is then repeated 10 times, so we obtain a collection
of 300 shapes for each (α,λ ) point.

For this set of shapes we simulated the non-dimensional
model for a time horizon of τ = 100 (which corresponds to
the time horizon of T = 100/r in the dimensional model)
calculating the final re-scaled population P∗i = P(Si)/α2 for
each shape, where P(Si) denotes the total population inside Si
after the simulation of the model. We obtained thus numbers
between between 0 and 1 that correspond to the fraction of
the maximum possible population achieved by that particular
combination of parameters and geometric shape.

Given the series of points (G j,P∗j ) relating figures with
different measures of compactness and the final re-scaled po-
pulation, it is possible then to calculate regressions of P∗ by
G that estimate the impact of the measure of compactness in
the final re-scaled population. Since both variables are non-
dimensional and are scaled between 0 and 1, we adopted the
slope of the linear regression to estimate the correlation, ob-
taining the impact of geometric shape as a function of α and
λ , S≡ F(α,λ ).

In Figure 3 we present a scheme that illustrates the whole
process described in this section.

In Figure 4 we present examples of distributions of G j,P∗j
and a curve F(α,λ ) for λ = 1. The distributions clearly illus-
trate that, when λ = 1, we have the maximum impact of the
geometric shape for values of α ∈ (5,10).

In Figure 5 we present the map of slopes obtained from the
simulations, F(α,λ ). In the map is drawn also two curves
f (α) = 0,1348e0,007490604α3

(C∗) and g(α) = 0,0096e0,2494α

(C0,4). C∗ is used to estimate area sizes that are greatly im-
pacted by fragment shape. To estimate this curve, for each
fixed value of λ we estimated the corresponding α for which
F(λ ,α) was at it maximum value, next using a least squares
fit, we adjusted a curve to fit the points. In this way C∗ re-
presents critical points where fragment shape has maximum
impact and can be used to estimate areas sizes (A∗) for which
fragment shape is very important. Finally, C0,4 represents a
part of the level set F(α,λ ) = 0,4. This line allows us to esti-
mate, area sizes (A0,4) for which fragment shape is relatively
weak (F = 0,4 and smaller for larger areas).

If we recall that α =
√

Atr/D we can establish approxima-
te formulas for the critical area size (A∗) and relatively safe
area size (A0,4):

A∗ ≈ D
r

(
ln(λ/0,1348648)

0,007490604

)2/3

(19)

A0,4 ≈
D
r

(
ln(λ/0,0096)

0,2494

)2

. (20)

19



WHEN SHAPE MATTERS RAUL ABREU DE ASSIS et al.

TABLE 1: SPEARMAN CORRELATION COEFFICIENT FOR THE SIMUATIONS OF THIS SECTION. α , HAS THE LARGEST VALUE,
ILLUSTRATING ITS IMPORTANCE TO THE SURVIVAL OF THE SPECIES. SINCE PARAMETERS At , r AND D ARE DIRECTLY RELATED TO

α , THERE ARE ALSO A SIGNIFICANT CORRELATION.

Spearman correlation coefficient for

Parameter λ = 0,1 λ = 1 λ = 10

α 1 0.9622 0.9748 0.8486
At

1 0.5264 0.5417 0.4037
D 1 -0.7330 -0.6660 -0.6196
r 1 0.3219 0.3308 0.4039
η 2 0.2020 (0.1) -0.0113 (0.85) 0.0723 (0.26)

1 All coefficients have a p-value smaller than 10−8.
2 p-value inside parenthesis.

TABLE 2: RESULTS OF SENSITIVITY ANALYSIS OF MODEL 16 FOR PARAMETERS α , λ AND η , P∗ = PΩ/PMAX IS THE DEPENDENT

VARIABLE. THE SPEARMAN COEFICCIENT AND THE SLOPES OF THE LINEAR, MULTILINEAR AND STANDARDIZED REGRESSIONS

INDICATE THAT α PLAYS THE LEADING ROLE IN THE SURVIVAL OF THE SPECIES, FOLLOWED BY λ AND η THAT HAVE A MUCH

WEAKER IMPACT.

Slope by Method of Regression

Parameter Linear 1 Multilinear 2 Standardized 3 Spearman 4

α 0.0482 0.0479 0.8414 0.8864 (< 10−4)
λ -0.0095 -0.0081 -0.1365 -0.2889 (< 10−4)
η 0.0091 0.0081 0.1319 0.2195 (< 10−3)

1 Individual linear regression in each parameter.
2 Simultaneous linear regression in all parameters.
3 Multilinear regression on the standardized variables

(
x∗i = (xi− x̄)/

√
var(x)

)
.

4 Upper bound for p-values inside the parenthesis.

Please note that the relatively small effects produced by va-
riations in η are not included in these equations.

A preliminary case study

In this section we present a case study for the species Sa-
pajus xanthosternos, a photo of an individual and a map of
its geographic distribution are provided in Figure 6. We must
stress that this study has the main purpose of illustrating the
application of the model and how to interpret its results. For
more robust biological conclusions concerning the species,
further empirical work in estimating the parameters should
be conducted.

It is possible to estimate r the maximum per capita growth
rate if the maximum annual growth rate of the species is
known. For this particular species, it was estimated that, gi-
ven the most favorable conditions, the population would ha-
ve a maximum growth rate of 13% per year (da Silva et al.,
2016), which leads to a correspondent logistic growth rate of

r = ln1,13≈ 0,1222/year. (21)

Mortality rates in the hostile environment are harder to esti-
mate, and we had to rely on an educated guess by the expert
(co-author Gustavo Canale) to arrive at a reference value. The
information provided is that a group of 64 individuals could
not last longer than a year, if exposed continuously to the
hostile environment in this time interval. With such infor-
mation and, considering an exponential decay in the hostile

environment it is possible to obtain:

µ = ln64≈ 4,1588/year. (22)

Since Sapajus xanthosternos is an arboreal species and the
hostile environment, in this particular case, is considered to
be mostly deforested areas dedicated monoculture, indivi-
duals tend to move and disperse faster in the impacted than in
the preserved areas. The meaning here is that even though the
individuals might move faster in arboreal environment, they
tend to move more often in deforested areas, always looking
for forest cover, resulting in a higher average speed in the
open areas. Considering this information and also by expert
advice, we adopted then a value of η = 2, meaning that, on
average, individuals move two times faster outside the pre-
served areas.

To estimate the remaining parameters, D and K, we co-
llected information on population estimates of populations
of Sapajus xanthosternos (Culot et al., 2019) living in ecolo-
gical sanctuaries near hostile environments. Since these po-
pulation estimates are based on extrapolation from number of
individuals sighted, we selected only those studies that were
conducted in smaller regions (total area below 1000 ha) so
that these estimates can be considered more precise. It is also
worth to mention that 1000 ha is the largest forest area size
in which Sapajus xanthosternos was recorded (Canale et al.,
2013). After this process we obtained 5 fragments with dif-
ferent area sizes, shapes and populations. Such data can be
consulted in Table 3.
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Figure 3: Scheme for the simulations of geometric shape impact on population. Each initial shape is deformed, reducing its compactness,
and the impact on population recorded.The distribution S(α,λ ), of linear regression slopes, measures the relation between compactness

and population levels.
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Figure 4: a) Five examples of collections of points (G∗j ,P
∗
j ), for different values of α and fixed λ = 1. For each collection we calculate the

slope of the linear regression, F(α,1). b) F(α,1) denotes the values of the slope of linear regression of (G∗j ,P
∗
j ), for λ = 1 and

α ∈ (2,30).

To obtain images of the fragment shapes we used the soft-
ware QGIS, using the CBERS4A downloader plugin, which
provides access to the online database of CBERS4A satellite
images. The images used correspond to the years in which
the population estimates studies were conducted at each in-
dividual fragment. These are displayed In Figure 7. For each
region, the model was simulated until the population reached
an equilibrium. At the end of the simulation we calculated
the total population inside the protected region, as in Figu-
re 7, obtaining thus a vector with five population estimates
provided by the mathematical model. We then used the least
squares method to determine the optimal values of D and K
that led to the best fit.

In Table 3 we present the results from simulations using
the least squares fit for D and K. The optimal value for
D was D∗ ≈ 9,1746× 10−4 year−1 · km−2 and for K was
K∗ ≈ 26,8033×10−4 individuals ·km−2. This particular va-
lue of K∗ was considered biologically plausible by the expert
biologist and within his own estimates.

With the estimated value of D∗ now it is possible to use
Equations 19 and 20 to establish to estimate the most sensi-
ble (A∗) and a relatively safe (A0,4) area sizes for the species
Sapajus xanthosternos. Results are presented in Table 4.

DISCUSSION

The simple model developed and the simulations allowed
us to identify clearly the most important parameters that de-
termine how strongly populations are affected by fragment
shape. The results show clearly that these parameters are
associated with mobility of the species, reproduction rate,
area of the fragment and mortality rate in the hostile envi-
ronment. All these parameters are combined in the two non-
dimensional groupings α and λ .

The two-dimensional mapping of the behavior of the mo-
del in relation to parameters α and λ allowed us to establish
functional relationships (i.e. 19 and 20) for A∗, the area size
for which the population is very sensible to geometric shape,
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Figure 5: Two-dimensional mapping of the impact of geometric shape on the population. F(α,λ ) denotes the values of the slope of linear
regression of (G∗j ,P

∗
j ). Two curves λ (α) are drawn in the mapping: C∗ given by the equation: f (α) = 0,1348e0,007490604α3

and C0,4, with
equation g(α) = 0,0096e0,2494α . Curve C∗ is constructed by estimating, for each fixed value of λ the corresponding value of α that leads
to the highest value for F(λ ,α) while C0,4 is a part of the level set F(α,λ ) = 0,4. C∗ represent critical values where fragment shape has

maximum impact while C0,4 represent a point where the impact of shape is already low.

and A0,4, an estimate of a sufficient large are where geometric
shape does not have much impact on population size. These
relations show that the area threshold is proportional to the
mobility (represented by D) and inversely proportional to r
(rate of reproduction), reflecting the intuitive ideas that mo-
re mobile species need larger areas and those who reproduce
faster need smaller ones. Also, the fact that the parameter
that represents mortality in the hostile environment (λ or µ)
is present as an argument of a logarithm function reflects the
fact, also shown in the sensitivity analysis, that its impact on
the area threshold is smaller.

Another, somewhat obvious, biological result that can be
derived from the equations is that species with smaller body
sizes should also need smaller areas for their preservation.
This is because smaller species tend to reproduce faster
(Dobson and Oli, 2007), meaning that parameter r should be
greater for these species, leading to smaller critical areas. Fi-
nally, more lethal hostile environments also lead to increase
in the area needed for preservation of the species. This is de-
monstrated in the results simply by recalling that λ = µ/r, so
any increase in µ leads to a correspondent increase in λ and,
since both A∗ and A0,4 are increasing functions of λ , any in-
crease in mortality rates in the hostile environment also leads
to larger areas needed for preservation.

Previous work on KISS models and critical patch size
(Cantrell and Cosner, 1994, 2001) present a more robust
mathematical treatment of the stability of the zero solution
(which represents extinction), while our approach (based on

simulations) provides for more flexibility in dealing with
complex geometric patch shapes. Another difference, is that
our approach does not aim to calculate a particular area si-
ze in which the population is able to survive, instead, we
identify a critical area in which geometrical shape exerts the
strongest influence on the total population. Finally, the case
study shows clearly how to use the model to estimate such
critical areas, establishing a clear methodology to use field
data.

Finally, we highlight a few points where further improve-
ment of the model and results can be made:

1. Incorporate the use of finite element methods for the
simulations of the model, since those can incorporate
better the details of geometric shape of fragments.

2. Apply the model to a number of different species and
fragments.

3. Improve the quality of parameter estimation, either by
using larger data bases with information on fragment
populations or better/more numerous estimates of re-
production/mortality rates and mobility.

4. Incorporate the mathematical methodology of estima-
ting critical patch size using eigenvalues as in Cantrell
and Cosner (1994) and Cantrell and Cosner (2001).
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a) b)

Figure 6: a) An individual of the species Sapajus Xanthosternos. b) Map that reproduces appoximately the geographic distribution of the
species.

TABLE 3: DATA ON Sapajus xanthosternos POPULATIONS IN PRESERVED FRAGMENTS, AVAILABLE IN CULOT et al. (2019) (CULOT

ET AL., 2019) AND COMPARISON WITH SIMULATIONS OF THE MODEL WITH OPTIMAL VALUES D∗ ≈ 9,1746×10−4 YEAR−1 ·KM−2 ,
K∗ ≈ 26,8033×10−4 INDIVIDUALS ·KM−2 .

Region name/number Total Area (ha) Population estimate | Simulation 1 Geographical Coordinates 2

Água Sumida - 1 240 52,80 | 51,22 (−48,29082778,−22,63317778)
Monal - 2 374 164,48 | 85,76 (−48,08360278,−22,69596944)
Pouso Alegre - 3 350 26,98 | 70,02 (−45,96666667,−22,21666667)
Mata São José - 4 230 56,35 | 44,68 (−47,47743300,−22,35881600)
Sara - 5 501 76,85 | 114,69 (−48,19536111,−22,66642222)

1 Number of individuals. Left: estimates based on number of sightings. Right: estimates based on simulations of the mat-
hematical model.

2 (Longitude, Latitude)
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GEOMETRICAL METHODS OF SHAPE DEFOR-
MATION

To generate figures with various values of GE, we adopted
three methods. Method 1 is based on “stretching” the figure
in one direction, method 2 is based on adding irregularities
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Figure 7: Images of preserved fragments for the Sapajus xanthosternos case study. The blue area represents an ecological reserve with
preserved environment where we have estimates for the population, the green area stands for preserved environment but not within the
reserve while the white area corresponds to the hostile environment. Name of the reserves a) Água Sumida (1) b) Monal (2) c) Pouso
Alegre (3) d) Mata São José (4) e) Sara (5). Simulations of the model were performed in these domains and the results were compared

with the field estimates for the populations (see Table 3).

TABLE 4: RESULTS FOR THE SPECIES Sapajus xanthosternos. AREAS WERE ESTIMATED USING PARAMETERS ESTIMATED THROUGH

SIMULATIONS (D), EXPERT ADVICE (λ ) AND BIBLIOGRAPHICAL RESEARCH (r) COMBINED WITH EQUATIONS 19 AND 20. A∗

STANDS FOR THE SIZE ESTIMATE IN WHICH THE POPULATION IS MOST SENSIBLE TO CHANGES IN FRAGMENT SHAPE. A0,4 IS AN

ESTIMATE FOR A FRAGMENT SIZE IN WHICH GEOMETRIC SHAPE DOES NOT HAVE MUCH IMPACT ON THE POPULATION.

Type of area (critical/safe) km2 ha

A∗ 1 0,6132 61,32
A0,4

2 8,062 806,20

1 Calculated using A∗ ≈ D
r

(
ln(λ/0,1348648)

0,007490604

)2/3
.

2 Calculated using A0,4 ≈ D
r

(
ln(λ/0,0096)

0,2494

)2
.

at the boundaries, increasing the perimeter without stretching
the figure in any direction, finally, the method 3 is a combi-
nation of the first two. In Figure 8 we present some examples
of figures generated by the three methods.

Given a target area ar0, a polygon P with nv vertices is ge-
nerated using polar coordinates, with angle ai =

2πi
nv+1 , , and

ray ρi, i = 0,1, · · · ,nv− 1, such that the area of P is ar0.
For each region P, two preserving area geometric transfor-
mations are applied on P in order to modify its measure of
geometric efficiency (GE). One of these transformation con-
sists in stretching P alongside one of the axis. The second
one consists in stretching np (out of nv) vertices for a factor
ri, i = 1,2 · · · ,np.

The data used in this article was create according to the
following steps:

1. Initially, for a given ar0, a region P is created with
nv vertices, following a uniform distribution U([a,b])

and following a uniform distribution U([c,d]) such that
GE > 0,65;

2. Using the first transformation method on P, ten re-
gions Ri are created with geometric efficiency iGE

10 , i =
1,2, · · · ,10;

3. Using the second transformation method on P, ten
regions Si are created with geometric efficiency(
0,2+ i−1

12

)
GE, i= 1,2, · · · ,10. In this case, np is a ran-

dom variable following a uniform distribution U([e, f ])
and ri follows a uniform distribution U([g,h]);

4. Using a combination of those two methods, ten regions
Ti are created like this: first, T̃i is created, using the se-
cond transformation method, with geometric efficiency

˜EG =
(
0,2+ i−1

12

)
EG and then Ti is created, using the

first transformation method, with geometric efficiency
γ ˜EG, γ < 1.
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a) b) c)

d) e) f)

g) e) f)

Figure 8: a) b) and c): figures generated using method 1, the measures of compactness (GE) are 0.65, 0.58 and 0.39, respectively. d) e)
and f) figures generated using method 2, the measures of compactness (GE) are 0.67, 0.42 and 0.16, respectively. g) h) and i) figures

generated using method 3, the measures of compactness (GE) are 0.65, 0.45 and 0.32, respectively. .

For a given ar0, steps 1-4 previously describe are repeated
ten times so that, for such ar0, thirty regions are created.
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Abstract—Alcohol consumption is a problem of both social and health interest since consumption at an early age increases the probability
of developing alcohol dependence, along with a series of risks associated with diseases, violence, and injuries. In young people, the first
episode and recurrence of alcohol consumption usually occur in the form of binge drinking, in which peers assume a protective or risky role.
Mathematical modeling of binge drinking has frequently been performed based on interactions with other consumption patterns, defined in
terms of quantity and frequency, without considering that the periodicity of excessive (or compulsive) alcohol consumption is associated
with specific social contexts, such as parties, where mainly social drinkers adopt this pattern. Our objective is to analyze the influence
exerted by social drinkers on their peers who adopt excessive alcohol consumption, as well as the recurrence and persistence of harmful
consumption. We formulate a mathematical model described by a Filippov system, where the “contagion” dynamic is based on two transfer
sequences according to the workweek and weekend. Our findings establish that depending on the parameter values of the model, four
asymptotic periodic dynamics can arise. In addition to this, the existence of a trade-off between protective and risk factors is evidenced,
allowing evaluation of the effect of social variables on binge drinking prevalence.

Keywords—Alcohol abuse, Excessive alcohol consumption, Filippov system, Trade-off

Resumen—El consumo de alcohol es un problema de interés tanto social como sanitario, ya que un consumo a edades tempranas aumenta
la probabilidad de desarrollar dependencia al alcohol, junto con una serie de riesgos asociados a enfermedades, violencia y lesiones. En los
jóvenes, el primer episodio y la recurrencia del consumo de alcohol suelen darse en forma de borracheras, en las que los pares asumen un rol
protector o de riesgo. La modelización matemática del consumo excesivo de alcohol ha sido realizada habitualmente a partir de interacciones
con otros patrones de consumo, definidos en función de cantidad y frecuencia, sin considerar que la periodicidad del consumo excesivo
(o compulsivo) está asociada a contextos sociales específicos, tales como fiestas, donde principalmente bebedores sociales adoptan este
patrón. Nuestro objetivo es analizar la influencia que ejercen bebedores sociales en sus pares, quienes adoptan un consumo excesivo de
alcohol, además de la recurrencia y la persistencia hacia un consumo nocivo. Formulamos un modelo matemático descrito por un sistema
de Filippov, donde la dinámica de “contagio” se basa en dos secuencias de transferencia en correspondencia a la semana laboral y el fin
de semana. Nuestros hallazgos establecen que, dependiendo de los valores de los parámetros del modelo, pueden surgir cuatro dinámicas
periódicas asintóticas. Además de eso, se evidencia la existencia de un trade-off entre los factores protectores y de riesgo, lo que permite
evaluar el efecto de las variables sociales en la prevalencia del consumo excesivo de alcohol.

Palabras clave— Abuso de alcohol, Consumo excesivo de alcohol, Sistema de Filippov, Compromiso
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INTRODUCTION

A lcohol is a drug highly consumed worldwide due to le-
gal character and regulatory frameworks based on per-

missive laws and policies (Brown et al., 2008; Margozzini
and Sapag, 2015). Harmful alcohol consumption is respon-
sible for multiple diseases and injuries (World Health Orga-
nization, 2019), whose consequences affect the person who
consumes it and their immediate environments, such as fa-
mily, friends, co-workers, and neighbors (Bernstein et al.,
2007; Sophie, 2019).

Based on a drink standard unit established by World
Health Organization, equivalently to 10 grams of pure al-
cohol (World Health Organization, 2019), a person who con-
sumes alcohol can be categorized as a Social drinker (also
termed moderate drinker), Risk drinker (also termed frequent
drinker), Harmful drinker, or Alcoholic drinker (also termed,
Dependent drinker) according to the quantity, frequency, and
duration of alcohol consumption (Benedict, 2007; Sánchez
et al., 2007; Brauer, 2008). The change in the consumption
pattern from one individual to another of a higher hierarchy,
ascending both in quantity and frequency of alcohol consum-
ption, has followed the medical/health model where a drug
user is a sick person who must be cured. In this approach,
the drug is an infectious-contagious agent that acts on the in-
dividual (Leiva-Vásquez and Rojas-Jara, 2018) and, therefo-
re, potentially transmissible to other individuals, often called
susceptible, which in this framework corresponds to social
drink and abstainers.

The mathematical modeling used in studying temporal dy-
namics of alcohol consumption patterns has followed princi-
ples and guidelines of the mathematical modeling approach
in infectious and contagious diseases (Benedict, 2007), ba-
sed on ordinary differential equations (An der Heiden et al.,
1998; Sánchez et al., 2007; Benedict, 2007; Manthey et al.,
2008; Santonja et al., 2010; Sharma and Samanta, 2013; Wal-
ters et al., 2013; Bani et al., 2013; Buonomo and Lacitignola,
2014; Sharma and Samanta, 2015; Adu et al., 2017; Giacob-
be et al., 2017; An et al., 2020; Crokidakis and Sigaud, 2021;
Bentout et al., 2021) and difference equations (Khajji et al.,
2020d,c; Labzai et al., 2020; El Youssoufi et al., 2021; Gu-
tiérrez et al., 2022). In addition, these models also incorpo-
rate delay processes (Ma et al., 2015; Hai-Feng et al., 2017;
Buonomo et al., 2018; Zhang et al., 2020; Ma et al., 2021;
Djillali et al., 2021), stochastic processes (Wang et al., 2017;
Anwarud and Yongjin, 2021), impulsive processes (Scribner
et al., 2009; Lakshmikantham et al., 1989), or optimal pro-
cesses (Bonyah et al., 2019; Khajji et al., 2020a; Pérez, 2020;
El Youssoufi et al., 2021). Traditionally, the interconnection
among consumption patterns follows a transference sequen-
ce: Social drinkers ↪→ Risk drinkers ↪→ Harmful drinkers (or
Binge drinkers) ↪→ Alcoholic drinkers, with the possibility
of returning to previous categories or being removed depen-
ding on the successful application of detoxification practices
(Khajji et al., 2020c,b). In addition, the co-abuse of substan-
ces (e.g., alcohol and smoking or alcohol and methampheta-
mine) (Bhunu and Mushayabasa, 2012; Orwa and Nyabad-
za, 2019) and the role of alcohol consumption in the trans-
mission and progression of various diseases (Thomas and
Lungu, 2009; Bowong et al., 2011; Mushayabasa and Bhunu,
2011; Bonyah et al., 2019) have been analyzed from mathe-

matical models that incorporate the drinking patterns in its
formulation.

Several studies on alcohol consumption reveal concern
about excessive alcohol consumption (Parada et al., 2011;
Llerena et al., 2015), characterized by consumption of 60/50
grams of alcohol pure per man/woman, carried out episo-
dically and concentrated in a short period (two hours) by
adolescent groups without gender differentiation on weekend
nights (Parada et al., 2011). Furthermore, socio-medical in-
vestigations closely link this consumption pattern with social
drinker individuals (Reifman et al., 1998; Adan et al., 2017;
Llerena et al., 2015), stand out the role of peers in the first
drunk episode and behavioral persistence (Borsari and Carey,
2001; Christiansen et al., 2002; Duncan et al., 2005; Rojas-
Jara and Leiva-Vásquez, 2018; González-Araya and Rojas-
Jara, 2020). Thus, the binge drinker label can be understood
as a momentary behavior that social drinkers mainly adopt in
specific drink circumstances such as parties and familiar or
friend meetings (Sudhinaraset et al., 2016; Bahr et al., 1995).
Importantly, the consequences of excessive alcohol consum-
ption on health vary, highlighting long-term memory loss and
muscle problems in the long-term (Crews et al., 2016; Her-
mens and Lagopoulos, 2018; Föger-Samwald et al., 2018;
Voskoboinik et al., 2021; Degerud et al., 2021).

In the mathematical modeling framework, and based on
the quantity consumption criterion for defining the compart-
ments into a supposed alcoholic population, the Binge drin-
ker and Harmful drinker classes are equivalents. The Binge
drinking pattern has been studied from interconnections with
the other compartments, particularly influencing social drin-
kers (Mulone and Straughan, 2012; Huo and Song, 2012;
Anwarud and Yongjin, 2021) or being influenced by Risk
drinkers (Hai-Feng et al., 2017; Zhang et al., 2020; Anwa-
rud and Yongjin, 2021). However, when considering both the
frequency and duration of consumption in specific circums-
tances, binge drinking behavior emerges mainly from Social
drinkers (Parada et al., 2011). The above approach is con-
ceptually correct and has not been widely explored. On this
matter, in Gutiérrez et al. (2022) using a discrete-time mathe-
matical model, analyzing the proportion of social drinkers
who engage in excessive drinking behavior in social contexts
based on parameters associated with social vulnerability (Ri-
mal and Real, 2005; Margozzini and Sapag, 2015). Their fin-
dings, apart from the analysis and dynamic richness of the
proposed model, establish parametric relationships that gua-
rantee the predominance of social consumption, where peer
pressure plays an important role. Outstanding research has
considered peer pressure, inserting it into the point prevalen-
ce as a function dependent on external variable information
that favors or discourages binge drinking (Giacobbe et al.,
2017; Buonomo et al., 2018) and whose mechanism is inspi-
red by imitation of inappropriate behavior and social confor-
mity (Buonomo and Lacitignola, 2014; Straughan, 2019).

We formulate a switch and impulsive mathematical mo-
del (a Filippov system) to represent the alcohol consumption
“contagion” dynamics based on two transference sequences
according to the work week and weekend interactions:

(1) Social drinkers ↪→ Risk drinkers ↪→ Harmful drinkers,

(2) Social drinkers ↪→ Binge drinkers and Risk drinkers ↪→
Harmful drinkers,
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Figure 1: Progression diagram for alcoholic drinking
compartmental mathematical model where S, R, H, and B

correspond to Social drinkers, Risk drinkers, Harmful drinkers, and
Binge drinkers, respectively.

Our goal is to analyze (i) the negative peer influence indu-
ced by social drinkers on other social drinkers for binge drin-
king adopt, (ii) the effect of binge drinkers on social drinkers,
(iii) the recurrence of binge drinking, and (iv) the persistence
on harmful consumption from a binge consumption on the
temporal dynamics of alcohol.

The organization of this paper is as follows. In Section 2,
a preliminary alcohol consumption mathematical model ba-
sed on ordinary differential equations is formulated, and its
qualitative analysis is carried out, from which a switch and
impulsive model emerges as a consequence of differentiating
the interrelations among drinking classes based on periodi-
city and contexts that favor the binge drinking by social drin-
kers. Then, in Section 3, a parametric sensibility analysis of
temporal dynamics of Social and Binge drinking patterns is
carried out. Finally, our findings are discussed in Section 4
as possibilities for future work.

MATHEMATICAL MODEL FORMULATION

A preliminary model and main results

Let be S(t), R(t), H(t), and B(t) compartments of Social
drinkers, Risk drinkers, Harmful drinkers, and Binge drin-
kers at time t, respectively. We assumed a constant popula-
tion size denoted by N, such that S(t)+R(t)+H(t)+B(t) =
N is obtained. New drinkers adopt social drinking at a rate
proportional to N, with a constant given by µ , where µ is a
unique vital rate used to represent both inflow and outflow of
individuals in the compartments. From the traditional mathe-
matical approach used for modeling the infectious and con-
tagious disease dynamics (Brauer, 2017), alcohol drinking
patterns are formulated (Sánchez et al., 2007). Thus, a so-
cial drinker individual becomes a risk drinker. In turn, a risk
drinker individual becomes a harmful drinker by the negative
influence, defined by effective contact between individuals of
different compartments at rates βS(R/N) and ηR(H/N) res-
pectively, that promote the change of alcohol consumption
pattern. In turn, social drinkers adopt a binge drinking pat-
tern at a rate S{(θS+ϕB)/N} where θ is the peer pressure
rate, and ϕB is the rate of returning to social consumption. Fi-
gure 1 illustrates the interconnections among these drinkers
classes.

Therefore, the following model is proposed



S′(t) = µN−βS(t)
R(t)
N
−S(t)

{
θS(t)+ϕB(t)

N

}
+

+ϕB(t)−µS(t)

R′(t) = +βS(t)
R(t)
N
−ηR(t)

H(t)
N
−µR(t)

H ′(t) = +ηR(t)
H(t)

N
−µH(t)

B′(t) = +S(t)
{

θS(t)+ϕB(t)
N

}
−ϕB(t)−µB(t)

,

(1)
with S(0)+R(0)+H(0) = N and B(0) = 0.

We observed that not exist alcohol-free equilibrium point
due to θ 6= 0. Even more, the equilibrium points of the nor-
malized model (1) are:

(1) E1 = (S∗1,0,0,1−S∗1) where

S∗1 =
2(µ +ϕ)

µ +2ϕ +
√

µ2 +4θ(µ +ϕ)
.

(2) E2 = (S∗2,1−S∗2−B∗2,0,B
∗
2) where

S∗2 =
µ

β
, and B∗2 =

θ µ2

β [β (µ +ϕ)−µϕ]
,

with β/µ > 1.

(3) E3 = (S∗3,R
∗
3,H

∗
3 ,B

∗
3) where

S∗3 =
2η(µ +ϕ)

(β +η)(µ +ϕ)+ϕη +
√
[β (µ +ϕ)+µη ]2 +4θη2(µ +ϕ)

,

R∗3 =
µ

η
, H∗3 =

βS∗3−µ

η
, B∗3 =

θS∗3
2

µ +ϕ(1−S∗3)
,

with η/µ > 1. In addition, note that 0 < S∗3 < 1. Indeed,
taking ξ = β/η , then

S∗3 =
2(µ +ϕ)

ξ (µ +ϕ)+µ +2ϕ +
√

[ξ (µ +ϕ)+µ]2 +4θ(µ +ϕ)
.

Defining S∗3 as a function of ξ > 0, we have that dS∗3/dξ < 0.
Thus,

S∗3 <
2(µ +ϕ)

µ +2ϕ +
√

µ2 +4θ(µ +ϕ)
= S∗1 < 1

is obtained, such that S∗3→ 0 as ξ increases.
Let be threshold values

U =
2β (µ +ϕ)

µ{µ +2ϕ +
√

µ2 +4θ(µ +ϕ)}
,

V =
η

µ

{
1− µ

β
− θ µ2

β [β (µ +ϕ)−µϕ]

}
.

Then, the following result establishes the stability of each
equilibrium point.

Proposition 1 Consider model (1). Thus,

(1) If 0 < U < 1, then the equilibrium point E1 is locally
asymptotically stable.
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(2) If U > 1 and 0 < V < 1 then the equilibrium point E2
is locally asymptotically stable.

(3) If U > 1 and V > 1 then the equilibrium point E3 is
locally asymptotically stable.

Proof 1 Let be J(E) the Jacobian matrix associate with mo-
del (1) at equilibrium point E = (S,R,H,B).

(1) The eigenvalues of J(E1) are{
−µ,−µ,λ0,−

√
µ2 +4θ(µ +ϕ)

}
where

λ0 =
2ϕ(β −µ)2−2µ[(β +θ)µ−β 2]

β (µ +2ϕ)+2µ(θ −ϕ)+β
√

µ2 +4θ(µ +ϕ)
.

Taking β = ξ µ , θ = τµ and ϕ = φ µ we have

λ0 = µ
−[ξ +2τ +2φ(ξ −1)]+ξ

√
1+4τ(1+φ)

2(τ−φ)
,

= −µ
2{τ +(1−ξ )[ξ (1+φ)−φ ]}

2(τ−φ)+ξ (1+2φ)+ξ
√

1+4τ(1+φ)
.

From 0 < U < 1, follows

ξ <
1
2

{
1+

φ +
√

1+4τ(1+φ)

1+φ

}
.

Let be ρ > 0 such that

ξ =
1
2

{
1+

φ +
√

1+4τ(1+φ)

1+φ

}
−ρ.

Then,

λ0 =−µρ
2(1+φ)

1+2ϕ +
√

1+4τ(1+φ)
< 0.

Therefore, E1 is locally asymptotically stable.

(2) The eigenvalues of J(E2) are−µ,λ1,λ2,−µ

[
1− η

µ

(
1− µ

β
− θ µ2

β [β (µ +ϕ)−µϕ]

)]
︸ ︷︷ ︸

1−V

 ,

where λ1 and λ2 are roots of P(λ ) = λ 2 + p1λ + p2 with

p1 =
β 2ϕ2−µ2ϕ(θ −ϕ)+β 3(µ +ϕ)+β µ(θ −ϕ)(µ +2ϕ)

β [β (µ +ϕ)−µϕ]
,

p0 =
β 2(µ +ϕ)−µ[µ(τ−ϕ)+β (µ +2ϕ)]

β
.

Taking β = ξ µ (Here, ξ > 1), θ = τµ , ϕ = φ µ and from
U > 1, we have

ξ >
1
2

{
1+

φ +
√

1+4τ(1+φ)

1+φ

}
.

Let be ρ > 0 such that

ξ =
1
2

{
1+

φ +
√

1+4τ(1+φ)

1+φ

}
+ρ,

then p1 = 2µ{ρ2(1 + φ)[2ρ(1 + φ) + 3(1 +√
1+4τ(1+φ)) + 2φ(3 + φ)] + (1 + φ) + (1 +

φ)[
√

1+4τ(1+φ) + 2τ(2 + 2φ +
√

1+4τ(1+φ))] +

4ρτ(1+φ)(2+φ)+ρ[3(1+
√

1+4τ(1+φ))+2φ(2+φ +

3
√

1+4τ(1+φ)+φ
√

1+4τ(1+φ))]}/{(1+2ρ(1+φ)+√
1+4τ(1+φ))(1 + 2φ + 2ρ(1 + φ) +

√
1+4τ(1+φ))}

and p0 = 2ρµ2(1 + φ)[ρ(1 + φ) +
√

1+4τ(1+φ)]/{1 +

2φ + 2ρ(1 + φ) +
√

1+4τ(1+φ)}, both positive va-
lues. Then, by the Routh–Hurwitz criterion, E2 is locally
asymptotically stable.

(3) The eigenvalues of J(E3) are {−µ,λ3,λ4,λ5}, where

λ3, λ4 and λ5 are roots of Q(λ ) = λ 3+q2λ 2+q1λ +q0 with

q2 =
r(S∗3)

µ +ϕ(1−S∗3)
+

β µ

η
,

q1 =
µ{(βS∗3−µ)η +β [βS∗3 +ϕ(1−S∗3)]}

η
,

q0 =
µ(βS∗3−µ){β [µ +ϕ(1−S∗3)]

2 +ηr(S∗3)}
η [µ +ϕ(1−S∗3)]

,

and r(S) = −ϕ(θ − ϕ)S2 + 2(θ − ϕ)(µ + ϕ)S + (µ + ϕ)2

which satisfies

(i) If θ = ϕ , then r(S) = (µ +ϕ)2 > 0,

(ii) If θ > ϕ , then r(S)> mı́n{r(0),r(1)} with r(0) = (µ +
ϕ)2 > 0 and r(1) = µ2 +θ(2µ +ϕ)> 0.

(iii) If θ < ϕ then r(S) ≥ (3θ +ϕ)(µ +ϕ)2/(4ϕ) > 0 for
any S > 0.

Consequently, q2 > 0. On the other hand, q1 > 0 and q0 > 0
if and only if βS∗3 − µ > 0 (i.e., the existence condition of
equilibrium point E3, positivity of component B∗3). Indeed,

βS∗3−µ =
β [β (µ +ϕ)+(µ +2ϕ)η ]−2µ[(β +η)ϕ−θη)]−β

√
β 2(µ +ϕ)2 +2βηµ(µ +ϕ)+ [µ2 +4θ(µ +ϕ)]η2

2[(β +η)ϕ−θη)]
,

=
2{β 2(µ +ϕ)(η−µ)+µ2(ϕ−θ)η−β µ[2ϕη +µ(η−ϕ)]}

β [β (µ +ϕ)+(µ +2ϕ)η ]−2µ[(β +η)ϕ−θη)]︸ ︷︷ ︸
N

+β

√
β 2(µ +ϕ)2 +2βηµ(µ +ϕ)+ [µ2 +4θ(µ +ϕ)]η2︸ ︷︷ ︸

L

=
M

N +L
,

30



REVISTA DE MODELAMIENTO MATEMÁTICO DE SISTEMAS BIOLÓGICOS - MMSB, VOL. 2, No. 2, agosto 2022

(a) (b) (c)

Figure 2: Temporal dynamics of model (1) in correspondence to outcomes in Proposition 1. We assumed N = 1 and initial conditions
S(0) = 0.4, R(0) = 0.5, H(0) = 0.1, and B(0) = 0, with common parameters: µ = 0.2, ϕ = 0.1, and θ = 0.1. In particularly, (a) β = 0.2

and η = 0.1 with U = 0.75, (b) β = 0.4 and η = 0.1 with U = 1.5 and V = 0.2, and (c) β = 0.4 and η = 0.7 with U = 1.5 and V = 1.4.

where clearly L > 0. Let be β = ξ µ (Here, ξ > 1), θ = τµ ,
ϕ = φ µ and η = κµ . Because V > 1, exist σ > 1 such that

κ = σ

(
1− 1

ξ
− τ

ξ [ξ (1+φ)−φ ]

)−1

.

Then,

M = 2µ
4(σ −1)ξ [ξ +(ξ −1)ϕ]> 0, and

N = µ
4{ξ [φ(ξ −2)+ξ ]+

+κ(σ ,ξ ,φ)[2τ +2φ(ξ −1)+ξ ]}.

Now, if U > 1 exist ρ > 0 such that

ξ =
1
2

{
1+

φ +
√

1+4τ(1+φ)

1+φ

}
+ρ,

we have N = {[1+2ρ +2φ(1+ρ)+
√

1+4(1+φ)τ][2(1+
φ)2ρ3 + (1 + φ)ρ2(1 + 2σ + 2φ(2σ − 1) +
3
√

1+4(1+φ)τ + σ(1 +
√

1+4(1+φ)τ + 2τ(2 + 2φ +√
1+4(1+φ)τ)) + ρ(1 + 4(1 + φ)τ +

√
1+4(1+φ)τ +

2σ(1 + φ + 2(1 + φ)τ +
√

1+4(1+φ)τ) + 2φ(2σ −
1)
√

1+4(1+φ)τ)]}/{4ρ(1 + φ)[ρ(1 + φ) +√
1+4(1+φ)τ]}> 0.
Finally, q2q1 − q0 = {β 2µS∗3[µ + ϕ(1− S∗3)] + ηϕ(1−

S∗3)[2µ(θS∗3 + µ) + θϕ(2− S∗3)S
∗
3 + 3µϕ(1− S∗3) + ϕ2(1−

S∗3)
2]+β [ϕµ(1−S∗3)(µ +ϕ(1−S∗3))+ηS∗3h(S∗3)]}/{η [µ +

ϕ(1− S∗3)]} where h(S) = −θϕS2 + [2θ(µ +ϕ)− µϕ]S +
µ(µ +ϕ) > mı́n{h(0),h(1)} for any S ∈ (0,1) with h(0) =
µ(µ +ϕ)> 0 and h(1) = µ2 +θ(2µ +ϕ)> 0.

Thus, q2q1−q0 > 0. Therefore, by the Routh–Hurwitz cri-
terion, E3 is locally asymptotically stable.

Importantly, the local stability of equilibrium point Ei
implies the unstably of equilibrium point E j with i 6= j ∈
{1,2,3}. Even more, and in some cases, the very existence
of the other equilibrium points. Figure 2 illustrates model (1)
trajectories according to Proposition 1 results.

A switch and impulsive type model

The kth week is divided into the work week and weekend
in correspondence with temporal intervals (kT,(k+ l)T )] and
((k+ l)T,(k+1)T ], respectively. Particularly, T = 7 days and

l = 4/7 are assumed. The flows shown in Figure 1 are divided
and defined in the previous temporalities according to two
transference sequences:

(1) Social drinkers ↪→ Risk drinkers ↪→ Harmful drinkers,
and

(2) Social drinkers ↪→ Binge drinkers and Risk drinkers ↪→
Harmful drinkers.

During weekends, the alcohol consumption prevalence is
estimated from new drinkers that adopt social or binge-
drinking. We assumed that input flow µN is divided into
complementary rates given by µαN and µ(1−α)N towards
Social drinking and Binge drinking compartments, respecti-
vely. The proportion α = α(t) ∈ (0,1) is represented by

α
′ = λ (1−α)− θS

S+B
α, α((k+ l)T ) = 1 (2)

and inspired from Cabrera et al. (2021), Gutiérrez-Jara et al.
(2022), Gutiérrez Jara and Muñoz Quezada (2022), and
Gutiérrez-Jara and Saracini (2022), which modeling is as-
sociated with risk perception. The rate λ ≥ 0 is a measure of
the protective factors that promote a social drinking pattern
through an increase of proportion α to its maximum value.
Thus, in θ = 0, the proportion α is equivalent to one, mea-
ning that the first episodic alcohol consumption is with res-
ponsibility and control, typically of social drinkers. On the
contrary, if θ > 0, the rate λ contributes to compensating
for peers’ negative influence, represented by the point preva-
lence level. Figure 3 illustrates the interconnections among
these compartments according to temporality.

Importantly, during the working week, binge drinkers do
not interactions with the other compartments due to the pe-
riodicity of this pattern of consumption is exhibited by social
drinkers only during the weekend that once the consumption
social context is over, such as a party, binge drinkers return to
initial social consumption or persist in harmful consumption.
At the beginning of each work week and weekend, represen-
ted respectively by instants t = kT and t = (k+ l)T , a fraction
δ ∈ (0,1) of binge drinkers return to social drinking, and the
complementary fraction adopts harmful drinking. In turn, so-
cial drinkers adopt binge drinking a fraction ω ∈ (0,1). The-
refore, the following model is proposed
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S′(t) = µN−βS(t)
R(t)
N
−µS(t)

R′(t) = +βS(t)
R(t)
N
−ηR(t)

H(t)
N
−µR(t)

H ′(t) = +η
R(t)
N

H(t)−µH(t)

B′(t) = 0


, if t ∈ (kT,(k+ l)T ]

S(t+) = (1−ω)S(t)
R(t+) = R(t)
H(t+) = H(t)
B(t+) = B(t)+ωS(t)

 , if t = (k+ l)T

S′(t) = µαN−S(t)
{

θS(t)+ϕB(t)
S(t)+B(t)

}
−µS(t)

R′(t) = −ηR(t)
H(t)

R(t)+H(t)
−µR(t)

H ′(t) = +ηR(t)
H(t)

R(t)+H(t)
−µH(t)

B′(t) = µ(1−α)N +S(t)
{

θS(t)+ϕB(t)
S(t)+B(t)

}
−µB(t)



, if t ∈ ((k+ l)T,(k+1)T ]

S(t+) = S(t)+δB(t)
R(t+) = R(t)
H(t+) = H(t)+(1−δ )B(t)
B(t+) = 0

 , if t = kT

(3)

Figure 3: Progression diagram for alcoholic drinking
compartmental mathematical model of switch type. The

continuous lines indicate the work week, and the dashed lines the
weekend flows.

such that S(0)+R(0)+H(0) = N and B(0) = 0.

RESULTS

The temporal dynamics of alcohol consumption patterns
obtained from model (3) correspond to periodic trajectories
that heuristically are of four types according to the persisten-
ce of the states: (i) Persistence of S and B, (ii) Persistence of

S, R, and B, (iii) Persistence of S, H, and B, and (iv) all states
persistence (See Figure 4).

The trajectories shape indicates the existence of maximum
and minimum values of S and B during the weekends. They
will tend to increase or decrease depending on the value of
the parameters involved in the model (3). Thus, we define the
following values

Xmax = lı́m
t→∞

máx
t∈I
{X(t)} and Xmin = lı́m

t→∞
mı́n
t∈I
{X(t)}

for X ∈ {S,B,α} with I = ((k + l)T,(k + 1)T ]. Note that
αmax = 1, and Bmin = 0 when ω = 0.

Therefore, How is the variation of Xmax and Xmin in the pa-
rametric plane λvs.θ as ρ ∈ {β ,η ,ω,ϕ,δ} increases? The
parameters have default values according to Table 1, assu-
ming a temporal limit t∞ = 350 and (θ ,λ ) ∈ [0 : 0.05 : 1]2.

Peer influence on binge drinking

The alcohol consumption patterns dynamic of the wee-
kend depends on the dynamics of the workweek, where β ,
η , and µ are relevant parameters. However, since µ is a pa-
rameter present in most of the equations of the model (3),
the sensitivity study requires a more robust analysis, which
is possible to perform using System Dynamics methodology
(Aracil and Gordillo, 1997; Sterman, 2000).
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(a) (b)

(c) (d)

Figure 4: Temporal dynamics of model (3). We assumed N = 1 and initial conditions S(0) = 0.4, R(0) = 0.5, H(0) = 0.1 and B(0) = 0,
with common parameters: µ = 0.2, ϕ = 0.1, θ = 0.1, ω = 0.1 and λ = 1. In particularly, (a) β = 0.2, η = 0.1 and δ = 1, (b) β = 0.4,

η = 0.1 and δ = 1, (c) β = 0.6, η = 0.5 and δ = 1, and (d) β = 0.6, η = 0.5 and δ = 0.5.

Effect of parameter β on the Social and Binge drinking
dynamical patterns

Figure 5 shows the effect of the parameter β on values of
Smax, Smin, Bmax, and αmin. The red arrow indicates that the
surfaces associated with the above values decrease as β in-
creases. Importantly, for small values of θ the surfaces Smax
and Smin vary, while for Bmax it varies as θ increases. Addi-
tionally, Figure 5(d) shows a unique shape for αmin.

Such variations can be explained by the interactions bet-
ween the state variables S and R in the model (3). As β in-
creases, the higher the point prevalence of social drinkers by
risk drinkers, which implies a decrease in social drinkers at
the start of each weekend. Consequently, it decreases the re-
lative size of S and thus the values Smax, Smin and Bmax also.

Effect of parameter η on the Social and Binge drinking
dynamical patterns

The effect of parameter η on the values of Smax, Smin and
Bmax is shown in Figure 6. The blue (respectively, red) arrow
illustrates that as η increases, the surfaces Smax and Bmax also
increase (respectively, Smin decreases). Note that larger varia-
tions in Smax and Smin are obtained for small values of θ (See

Fig.6(a)-(b)). However, Bmax varies widely for large values
of θ (See Fig.6(c)).

From model (3) follows that if η increases, the higher the
point prevalence of risk drinkers by harmful drinkers, which
implies a decrease and increase of risk drinkers and social
drinkers at the start of each weekend, respectively. Conse-
quently, the relative size of S increases, and therefore the va-
lue of Smax also increases. The decreasing of Smin and increa-
se of Bmax could be understood from the point prevalence of
peer in equation (2) which increases due to the increase in S
or θ .

Trade-off between protective and risk factors

Figure 7 shows the proportion of individuals who, in the
long term, remain social drinkers at the end of each wee-
kend, that is, those who socially start their consumption and
end it the same way. In this case, its consumption pattern
is not altered without succumbing to binge drinking. Conse-
quently, the blue region is associated with the combination
of high values of θ and low values of λ , indicating that a
small proportion of individuals remain social drinkers at the
end of each weekend. On the contrary, the red color accounts
for a high proportion of individuals who remain social drin-
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Parameter Default value
Fig.5 Fig.6 Fig.7 Fig.8 Fig.9 Fig.10

β 0.5:0.1:0.9 0.5 0.5 0.5 0.5 0.5
η 0.5 0.3:0.1:0.7 0.5 0.3 0.3 0.3
ω 0.0 0.0 0.0 0.1:0.2:0.9 0.0 0.0
ϕ 0.0 0.0 0.0 0.0 0.1:0.2:0.9 0.0
δ 1.0 1.0 1.0 1.0 1.0 0.1:0.2:0.9

TABLE 1: THE PARAMETERS AND THEIR DEFAULT VALUES FOR THE SYSTEM (3) FOR VISUALIZING THE Xmax AND Xmin WITH

X ∈ {S,B,α} TAKING INITIAL CONDITIONS S(0) = 0.4, R(0) = 0.5, H(0) = 0.1 AND B(0) = 0, AND THE COMMON VALUE µ = 0.2.

(a) (b)

(c) (d)

Figure 5: Influence of β ∈ {0.5,0.6,0.7,0.8,0.9} on the surface (a) Smax, (b) Smin, (c) Bmax, and (d) αmin. The red arrow indicates that the
surfaces associated with the variables above decrease as β increases.

kers. To describe such an effect, the horizontal axis quantifies
peer social pressure exerted by social drinkers on other social
drinkers, and the vertical axis quantifies the factors of beha-
vioral regulation, self-control, and behavior management of
social drinking.

Recurrence to binge drinking

The recurrence of binge drinking is measured by the pro-
portion ω ∈ (0,1) of S. Figure 8 illustrates the effect of the
parameter ω on the values of Smax, Smin, Bmax, and αmin. As in
the previous figures, the red arrow (respectively, blue) descri-
bes that as ω increases, the surfaces associated with the pre-
vious values decrease (increase, respectively). Note that Smax
and Smin vary widely and for increasing values of θ . Conver-

sely, Bmax is variable for small values of θ . Additionally, as
ω increases, αmin decreases slightly.

From the interrelations on the model (3) follows that if ω

increases, a more significant proportion of social drinkers are
predisposed to binge drinking at the beginning of each wee-
kend. Thus, states B and S have high and low initial condi-
tions, respectively. This could explains the decrease in Smax,
Smin and αmin and the increase in Bmax.

Dependent prevalence of binge drinkers

Model (3), with respect to model (1), does not consider the
rate returning to social consumption given by ϕB. However,
because the binge drinker label corresponds to a momentary
state which is expressed in a single occasion, here during the
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(a) (b) (c)

Figure 6: Influence of η ∈ {0.3,0.4,0.5,0.6,0.7} on the surface (a) Smax, (b) Smin and (c) Bmax. The red/blue arrow indicates that the
surfaces associated with the variables above decrease/increase as η increases.

Figure 7: Value of αmin ∈ [0,1] according to color scale for the
combination of parameters θ and λ .

weekend, such that once the drinking circumstance is over,
the individual can return to social consumption (even abs-
temious) until the following weekend or maintain harmful
drinking during the workweek.

The effect of parameter ϕ on the values of Smax, Smin, Bmax
and αmin is presented in Figure 9. As ϕ increases, the surfa-
ces associated with Smax and Smin decrease. On the contrary,
the surfaces associated with Bmax and αmin increase when ϕ

also increases. Note that the variability for Smax is highly con-
centrated towards small values of θ and with a rapid drop-off
towards a constant value as θ increases. With respect to Smin,
there is a homogeneous decrease in the surfaces with respect
to ϕ increase and an increase in the surfaces associated with
Bmax and αmin for all the possible combinations of the θ and
λ parameters. In particular, a subtle variation is observed for
the αmin values as ϕ increases.

In model (3), the ϕ increase implies that the point pre-
valence of social drinkers by binge drinkers also increases.
Thus, the S and B states decrease and increase, respectively.
Finally, the increase of B implies a lower punctual prevalen-
ce of peers according to equation (2), where the increase of
αmin is explained.

Harmful drinking from a sustained binge drinking

Extending binge drinking to the working week corres-
ponds to adopting harmful consumption, which is measured
by the proportion δc = 1−δ ∈ (0,1).

Figure 10 presents the effect of parameter δ on Smax, Smin,
and Bmax values. Considering the influence of θ , the surfaces
associated with the previously mentioned values increase in
all cases. For low values of θ , the Smax surfaces intersect. On
the other hand, the surfaces Smin and Bmax behave homoge-
neously as δ varies. Thus, increasing δc causes Smax, Smin,
and Bmax to decrease. The size of S and B will be low, and
the drinking population will be concentrated in the harmful
drinking pattern.

DISCUSSION AND CONCLUSIONS

The present research studies the temporal dynamics of dif-
ferent alcohol consumption patterns by formulating a com-
partmental mathematical model described by impulsive and
change differential equations, a Filippov system. Based on
the medical/health approach, dynamic “contagion” presents
differences in the individual’s social context. In the classi-
cal modeling of alcohol consumption, social drinkers define
a class analogous to the formed by susceptible individuals
in infectious-contagious disease modeling. However, we es-
tablish that social drinkers have the ability to influence the
behavior of others, altering and modifying both their original
patterns of alcohol consumption and that of their peers th-
rough social pressure (Buonomo and Lacitignola, 2014; Gia-
cobbe et al., 2017; Buonomo et al., 2018; Straughan, 2019;
Gutiérrez et al., 2022).

Our findings establish that depending on the value of the
parameters involved in the formulated mathematical model
(3), four asymptotic periodic dynamics can emerge, one mo-
re than the continuous model (1). The dynamics analysis,
numerically carried out, focuses on the Social drinking and
Binge drinking states during weekends and the long term,
bounded by their maximum and minimum values, denoted
by Smax and Smin respectively. A sensitivity analysis allowed
determining the positive, negative, or neutral effect of the pa-
rameter ρ ∈ {β ,η ,ω,ϕ,δ} on Smax, Smin, Bmax and αmin for
(θ ,λ ) ∈ [0,1]2. The cases where surfaces are not shown for
αmin are due to the fact that there are no significant obser-
vable changes between surfaces. The parametric influence is
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(a) (b)

(c) (d)

Figure 8: Influence of ω ∈ {0.1,0.3,0.5,0.7,0.9} on the surface (a) Smax, (b) Smin, (c) Bmax and αmin. The red/blue arrow indicates that
the surfaces associated with the variables above decrease/increase as ω increases.

summarized in Table 2.

Parameter Influence
Smax Smin Bmax αmin

β − − − 0
η + − + 0
ω − − + −
ϕ − − + +
δ + (θ � 0) + + 0

TABLE 2: INFLUENCE OF PARAMETER ρ ∈ {β ,η ,ω,ϕ,δ} ON

VALUES Smax , Smin , Bmax AND αmin AS INCREASES IT: POSITIVE

(+), NEGATIVE (−) AND NEUTRAL (0).

Our main finding corresponds to the existence of a trade-
off between protective and risk factors. In Figure 8, a tension
between protective and risk factors are observed, evidenced
by the color scale (value of αmin), where a large proportion
of individuals maintain a pattern of social consumption when
peer pressure is low. In the face of peer social pressure, we
can argue that a level of self-control regulates consumption
behavior and causes the maintenance of the original pattern,
social consumption. Furthermore, it is possible to determine
thresholds of support and resistance to peer social pressu-
re that is exerted in contexts of alcohol consumption. When
peer pressure (θ ) is greater than self-control (λ ), the original

consumption pattern may alter and establish a start toward
new consumption patterns.

In this study, and as a limitation, only the effect caused by
peer social pressure on consumption social patterns is consi-
dered, both positively and negatively, understanding that the-
re may be other variables that also affect it, such as school
and family (Rojas-Jara and Leiva-Vásquez, 2018). The latter
is transformed into a proactive drift towards new studies on
factors capable of altering alcohol consumption behaviors.
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(a) (b)

(c) (d)

Figure 9: Influence of ϕ ∈ {0.1,0.3,0.5,0.7,0.9} on the surface (a) Smax, (b) Smin, (c) Bmax and (d) αmin. The red/blue arrow indicates the
surfaces associated with the variables above decrease/increase as ϕ increases.

(a) (b) (c)

Figure 10: Influence of δ ∈ {0.1,0.3,0.5,0.7,0.9} on the surface (a) Smax, (b) Smin and (c) Bmax. The blue arrow indicates the surfaces
associated with the variables above increase as δ increases.
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Abstract—Two generalist predators not interfering with each other and hunting the same single prey that gathers in a herd are here
considered. The system allows only two possible final outcomes, the prey-free state in which both predators thrive at their own carrying
capacities, an equilibrium that is always present, and coexistence, which is not guaranteed to exist. When it arises, it does it in pair, of which
one point is a saddle. As a result, the phase space is partitioned into two domains of attraction corresponding to these two equilibria. If the
prey represents a pest, this result would provide a theoretical tool for its eradication, provided that it is coupled with some human external
action, such as insecticide spraying, which however can be administered just in a mild way, sufficient to push the system trajectories into the
prey-free point domain of attraction. If it is a species to be preserved instead, corresponding measures for enhancing its survival should be
taken, such as increasing its reproductivity or lowering the predators’ pressure, so that the state of the system would fall into the attraction
domain of the coexistence equilibrium.

Keywords—Mathematical Ecology, Mathematical Models, Population theory, Herding, Two-predators-one-prey

Resumen—Aquí se consideran dos depredadores generalistas que no interfieren entre sí y cazan la misma presa única que se reúne en una
manada. El sistema permite solo dos posibles resultados finales, el estado libre de presas en el que ambos depredadores prosperan con sus
propias capacidades de carga, un equilibrio que siempre está presente y la coexistencia, que no está garantizada. Cuando surge, lo hace en
pareja, de las cuales un es un punto silla. Como resultado, el espacio de fases se divide en dos dominios de atracción correspondientes a
estos dos equilibrios. Si la presa representa una plaga, este resultado proporcionaría una herramienta teórica para su erradicación, siempre
que se acompañe de alguna acción externa humana, como la fumigación con insecticidas, que sin embargo puede administrarse de forma
suave, suficiente para empujar las trayectorias del sistema en el dominio de atracción del punto libre de presas. Si en cambio se trata de una
especie a. Si en cambio se trata de una especie a preservar, se deben tomar las medidas correspondientes para mejorar su supervivencia,
como aumentar su reproductividad o disminuir la presión de los depredadores, de modo que el estado del sistema caiga en el dominio de
atracción del equilibrio de coexistencia.

Palabras clave— Modelos Matemáticos, Ecología Matemática, Teoria de las Poblaciónes, Manadas, Dos-predatores-una-presa

INTRODUCTION

Several papers in the literature address the one-predator-
several-prey situation, for instance in trophic chains as in
(Baudrot et al., 2016a,b), where at times also the influence
of contaminants and diseases are discussed, (Baudrot et al.,
2018; Sieber et al., 2014).

Populations gathering in herds are well-known in nature.
Herbivores usually have this habit and retain it also while

wandering in the prairies in search for better feeding and
pastures. Modeling this specific feature has been addressed
in a number of papers, starting from (Ajraldi et al., 2011).
Herding has been a subject of recent researches also with si-
tuations envisaging a disease affecting some population in
the system, (Belvisi and Venturino, 2013; Cagliero and Ven-
turino, 2016; Kooi and Venturino, 2016). In other contexts
several investigations have dealt with different and even ge-
neric response functions (González-Olivares et al., 2022; Vil-
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ches et al., 2018) or have studied herding populations diffu-
sion in space (Souna et al., 2020; Jiang and Tang, 2019). One
of the results that most distiguishes these models from the
classical ones is in (Melchionda et al., 2018), where tristabi-
lity is discovered to take place in two competing populations,
allowing the simultaneous thriving of both, in contrast to the
classical result that for such a system competitive exclusion
must occur.

In this paper we continue the study of prey gathered in
herds. We keep on using a particular form of the response
function, namely the square root function, but it should be
remarked that the latter is just a particular instance, a more
general formulation has been introduced in (Bulai and Ventu-
rino, 2017; Djilali, 2019) leading perhaps to a slightly more
difficult analysis, without however any significant change in
the results. Here, in particular we assume that, if their num-
bers are large enough, prey can respond to predators’ attacks
by some form of retaliation, thereby reducing the chance of
being hunted. The main idea is exposed in (Acotto and Ven-
turino, 2022) and has further been explored in the parallel
paper (Bondi et al., 2022). In the present situation we intro-
duce a different ecological situation than those considered in
the previous two investigations.

The paper is organized as follows. We describe the model
construction in the next section and turn to its analysis in the
subsequent section. A final discussion concludes the paper.

MODEL SETUP

We consider a prey population N that gather together.
Herding facilitates the possible predators’ X capturing of
the prey on the boundary of the herd, expressed mathema-
tically by the function h(N,X). This is simply modeled via a
square root function, assimilating the herd shape to a circle,
although more general exponents other than 1/2 can be ta-
ken, as discussed in (Bulai and Venturino, 2017), to account
for more complicated domains, without any substantial chan-
ges in the results. Thus h has the form

h(N,X) = a
√

NX .

Here, specifically, two predators P and Q are present in the
environment, and hunt the prey. The two predators are as-
sumed to have also other food sources, and thereby do not
explicitly compete with each other, only “mildly” through
sharing the common prey N. Following the ideas of (Acot-
to and Venturino, 2022), the predators’ attacks are reduced
if the prey population attains a sufficiently large size. There-
fore to model the functional response, we need a decreasing
function of N, that vanishes in the limit when N tends to infi-
nity. Thus, the function h(N,X) should be a kind of modified
Holling type II (HTII) response function, and thus must be
modified as follows

h(N,X) = a

√
NX

1+bN
. (1)

These considerations lead to the system

dP
dt

= nPP
(

1− P
HP

)
+

ePaP
√

NP
1+bPN

, (2)

dQ
dt

= nQQ
(

1− Q
HQ

)
+

eQaQ
√

NQ
1+bQN

,

dN
dt

= nNN
(

1− N
HN

)
− aP
√

NP
1+bPN

− aQ
√

NQ
1+bQN

.

The first two equations for the predators are similar, contai-
ning a logistic term expressing the availability of other re-
sources, and the benefit from hunting the prey N, scaled via
suitable conversions coefficients eP and eQ, where the fun-
ctional response of type (1) has been employed. The third
equation for the prey N also has a logistic growth rate, but the
additional terms express the harm suffered by the predators’
attacks. All the parameters are assumed to be nonnegative, in
particular the reproduction rates nP and nQ are here strictly
positive:

nP > 0, nQ > 0. (3)

Table 1 lists all the model parameters and their interpretation.

Parameter Interpretation
HP predator P carrying capacity
HQ predator Q carrying capacity
HN prey N carrying capacity
nP predator P reproduction rate
nQ predator Q reproduction rate
nN prey N reproduction rate
eP predator P conversion coefficient
eQ predator Q conversion coefficient
aP predator P hunting rate
aQ predator Q hunting rate
bP predator P handling time
bQ predator Q handling time

TABLE 1: PARAMETER INTERPRETATION FOR MODEL (2).

THE SYSTEM BEHAVIOR

We study here the dynamics of (2), focusing on its possible
equilibria. The analysis will assess their feasibility and local
stability.

Equilibria feasibility

The equilibrium equations obtained from (2) are highly
nonlinear, but in some simple instances, analytic expressions
for the equilibrium population values can be obtained. There
are eight possible combinations, if we concentrate on the two
alternatives that a population may or may not be present in
the environment. All of them are at least conditionally admis-
sible, as we will see below. This essentially follows from the
assumption that the predators are generalist, which prevents
the rejection of the points containing only such populations
in the absence of their prey N based on the fact that for spe-
cialist predators this is their only food source.
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Equilibria with just one population

Easily, the points E0 = (0,0,0), EN = (0,0,HN), EQ =
(0,HQ,0) and EP = (HP,0,0) are seen to be unconditionally
feasible.

Equilibria with just two populations

The same results as for the single population points hold
also for the prey-free point EPQ = (HP,HQ,0).

The other equilibria with two populations are more invol-
ved. But the symmetrical nature of the system (2) in terms of
the two predators, allows us to investigate only one of them,
as for the other one the results will follow by a simple change
in the subscript.

Prey-one-predator equilibrium EQN = (0, Q̃∗, Ñ∗)

We thus investigate the point with P = 0, Q 6= 0, N 6= 0.
From the last two equilibrium equations of (2), we obtain the
nonlinear system

Φ(N) = ΦQ(N) =
HQ

nQ

(
nQ +

eQaQ
√

N
1+bQN

)
, (4)

Ψ(N) = ΨQ(N) =
nN

aQ

√
N
(

1− N
HN

)
(1+bQN).

The possible solution of this system will be investigated geo-
metrically, as the intersections of the two curves Φ(N) and
Ψ(N). The height of these points therefore provide the pre-
dators equilibrium value Q̃∗, while the abscissae those of Ñ∗,
so that the point EQN = (0, Q̃∗, Ñ∗) is known.

The function Φ(N) is defined over the whole positive li-
ne, with height at the origin given by HN and a horizontal
asymptote at the same level, in view of the following result

lı́m
N→∞

Φ(N) = H+
Q ,

the asymptote being approached from above. Evaluating its
derivative, we find

Φ
′(N) =

HQeQaQ(1−bQN)

2nQ
√

N(1+bQN)2

where the denominator is aways positive. To assess the sign
of Φ′(N) we just need to study the one of the numerator,
which is positive for N < 1

bQ
. Thus for 0 < N < 1

bQ
the

function Φ(N) is increasing, and conversely decreasing in
N > 1

bQ
. The maximum is thus attained at the point

MΦ =

[
1

bQ
,Φ

(
1

bQ

)]
.

In view of the above findings, it is apparent that near the ori-
gin Φ(N) is concave, because

lı́m
N→0+

Φ
′(N) = +∞,

and it becomes convex for large values of N, indicating the
presence of an inflection point. To assess it better, we diffe-
rentiate once more,

Φ
′′(N) =

eQaQHQ(3N2b2
Q−6NbQ−1)

4nQN
√

N(1+bQN)3
.

Again, the denominator does not influence the sign of the se-
cond derivative. In the numerator the term 3N2b2

Q−6NbQ−1
is positive whenever N < N−

Φ′′ and N > N+
Φ′′ , where N±

Φ′′ are
its zeros,

N±
Φ′′ =

1
3b2

Q

[
3bQ±

√
9b2

Q +3b2
Q

]
=

1
3b2

Q

[
3bQ±2bQ

√
3
]

that always exist as the discriminant of the corresponding
quadratic equation is always positive. Specifically,

N−
Φ′′ =

1
3bQ

[
3−2

√
3
]
< 0, N+

Φ′′ =
1

3bQ

[
3+2

√
3
]
> 0.

In conclusion, Φ(N) is convex for 0 < N < N+
Φ′′ and it is

concave for N > N+
Φ′′ .

Qualitatively, the behavior of Φ(N) is shown in Figure 1.

Figure 1: The function Φ(N) for the parameter choice nQ = 0,4,
HQ = 5, eQ = 0,3, aQ = 0,7, bQ = 0,2.

We now study the function Ψ(N). It is defined for all N ≥ 0
and

lı́m
N→∞

Ψ(N) =−∞.

Its zeros are located at the origin and at ψ1 = HN , while the
other vanishing point ψ2 =−b−1

Q < 0 lies outside the relevant
domain of interest. On calculating its derivative, the denomi-
nator is found to be always positive,

Ψ
′(N) =

−nN [5bQN2−3N(bQHN−1)−HN ]

2aQHN
√

N
,

and the sign of Ψ′(N) depends just on the one of the nume-
rator, which is the quadratic function

q(N) =−5bQN2 +3N(bQHN−1)+HN .

Specifically Ψ′(N) > 0 within the interval of the roots N±
Ψ′ ,

with

N−
Ψ′ =−

1
10bQ

[3(bQHN−1)−
√

9(1−bQHN)2 +20bQHN ],

N+
Ψ′ =−

1
10bQ

[3(bQHN−1)+
√

9(1−bQHN)2 +20bQHN ].

Note that they are always real, because q(0) = HN > 0 and
q(N) is a concave parabola. Also, we have N+

Ψ′ < 0 and N−
Ψ′ >

0, in both cases bQHN > 1 and bQHN < 1. Thus Ψ(N) is
increasing for 0 < N < N−

Ψ′ and decreasing in [N−
Ψ′ ,∞), so
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that its maximum is located at the point (N+
Ψ′ ,Ψ(N+

Ψ′)). We
study now the second derivative

Ψ
′′(N) =

−nN [15bQN2−3N(bQHN−1)+HN ]

4aQHNN
√

N
,

where the denominator is once more always positive in the
domain of interest, N > 0. To assess convexity, we investigate
the sign of the numerator, which is positive in case

p(N) = 15bQN2−3N(bQHN−1)+HN ≤ 0.

The roots of p(N) = 0 are

N±
Ψ′′ =

1
30bQ

[3(bQHN−1)±
√

∆], (5)

where ∆ is regarded as a function of bQHN :

∆ = 9(bQHN−1)2−60bQHN = 9(bQHN)
2−78bQHN +9.

In turn ∆ is a quadratic function in δ = bQHN , with roots

δ±=
1
9
[39±

√
1521−81] =

1
9
[39±

√
1440]≈ 1

9
[39±37,95]

that are both positive. Thus ∆ > 0 in both the following alter-
native cases:

0 < bQHN < δ− = δ1 ≈ 0,12, bQHN > δ+ = δ2 ≈ 8,55.

With these restrictions this guarantees the existence of real
roots for the numerator of the second derivative of Ψ, namely
N±

Ψ′′ .
There are two cases:

If ∆ < 0, N−
Ψ′′ and N+

Ψ′′ are both complex, the quadratic
p(N) is always positive and thus Ψ′′(N) < 0 entailing
that the function Ψ(N) is always concave for N > 0.

Alternatively for ∆> 0, we may have either 0< bQHN <
δ1 < 1 or bQHN > δ2 > 8.

Note that for bQHN < 1, from (5) we find N±
Ψ′′ < 0, be-

cause ∆< 3(bQHN−1). In such case Ψ′′(N)< 0 outside
the interval [N−

Ψ′′ ,N
+
Ψ′′ ], and in particular for all N > 0.

Hence in the domain of interest, Ψ is concave.

If instead bQHN > 1, again using (5) we have N±
Ψ′′ > 0,

once more because ∆< 3(bQHN−1). But this and ∆> 0
imply that bQHN > δ2 > 8, so that either

0 < N−
Ψ′′ < δ1 < 1, N+

Ψ′′ > δ2 > 8,

or, alternatively

N±
Ψ′′ > δ2 > 8.

In both cases, it turns out that Ψ′′(N)> 0 for N−
Ψ′′ <N <

N+
Ψ′′ , which implies that Ψ(N) is convex in the same

interval [N−
Ψ′′ ,N

+
Ψ′′ ], and concave for 0 < N < N−

Ψ′′ as
well as for N > N+

Ψ′′ .

These possible inflection points lie in the first quadrant
only if the condition Ψ(N±

Ψ′′)> 0 is satisfied.
The equilibrium EQN is therefore a possible intersection

of Φ(N) and Ψ(N) in the first quadrant. Now, in view of the

above analysis, this is not always guaranteed, as it is clear
from Figure 2. It is also apparent that the two intersections,
giving a pair of equilibria, occur via a saddle-node bifurca-
tion.

A sufficient condition for the existence of such points is
obtained when the maximum value of Ψ(N) exceeds the va-
lue of Φ(N) for the corresponding abscissa. Obviously, the
latter is located at the zero N+

Ψ′ of Ψ′(N) and thus the suffi-
cient condition reads

Φ(N+
Ψ′)≥Ψ(N+

Ψ′). (6)

Figure 2: Graph of the functions Ψ(N) and Φ(N) with the
parameters aQ = 0,7, bQ = 0,2, eQ = 0,3, nN = 0,5, nQ = 0,4,

HQ = 5. Left to right, HN = 25, HN = 38,6 and HN = 40.

.

Equilibrium with the other predator absent (P̂∗,0, N̂∗)

As stated above, this case can be investigated in the same
way as for EQN = (0, Q̃∗, Ñ∗), by suitably changing the no-
tation. The sufficient condition (6) would be replaced by an
analogous statement, where Φ(N) and Ψ(N) would be meant
to be the functions ΦP(N) and ΨP(N) with an obvious chan-
ge of notation in (4).

Coexistence equilibrium

We study this equilibrium E∗ = EPQN = (P∗,Q∗,N∗) by
solving two of the equilibrium equations and substituting into
the remaining one. From the first two equilibrium equations
we find

P =
HP

nP

(
nP +

ePaP
√

N
1+bPN

)
and

Q =
HQ

nQ

(
nQ +

eQaQ
√

N
1+bQN

)
.

Substitution into the equilibrium equation for N we obtain
the equation

β (N) = 0,
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Figure 3: The figure shows the behavior of β (N) as a function of
aQ ∈ [0,1,0,9], where all other parameters are given in (8).

where

β (N) = nNN
(

1− N
HN

)
(7)

−aP
√

NHP[nP(1+bPN)+ ePaP
√

N]

nP(1+bPN)2

−aQ
√

NHQ[nQ(1+bQN)+ eQaQ
√

N]

nQ(1+bQN)2 .

The function β (N) is explored numerically for the assess-
ment of its possible zeros. For this task we use the following
set of parameters:

nN = 0,3, nP = 0,4, nQ = 0,3, HP = 150, (8)
HQ = 1200, HN = 1500, eP = 0,8, eQ = 0,9,

aP = 0,8, aQ = 0,2, bP = 0,4, bQ = 0,1.

Figure 3 contains the plots of β (N) for nine choices of the
parameter aQ, the predator Q hunting rate, in the interval
[0,1,0,9], while all the remaining ones are taken from (8).
Similarly in Figure 4 the varying parameter, in the same in-
terval, is nN , the prey N birth rate. Finally in Figure 5 we let
nQ, the predator Q birth rate, change. These three parameters
have been selected because they appear to be the most impor-
tant ones to influence the behavior of β (N). Further, in all ca-
ses, it is seen that the number of the nontrivial roots changes,
it may be zero, or up to two. Therefore the coexistence equi-
librium is not guaranteed always to exist. Also, whenever it
arises, it does it in pairs, through a saddle-node bifurcation.

Equilibria stability

To assess local stability, we need the Jacobian of (2):

J =

J1,1 0 J1,3
0 J2,2 J2,3

J3,1 J3,2 J3,3

 ,
with

J1,1 = nP

(
1− 2P

HP

)
+

ePaP
√

N
1+bPN

J1,3 =
ePaPP

2
√

N(1+bPN)2

Figure 4: The figure shows the behavior of β (N) as a function of
nN ∈ [0,1,0,9], where all other parameters are given in (8).

Figure 5: The figure shows the behavior of β (N) as a function of
nQ ∈ [0,1,0,9], where all other parameters are given in (8).
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J2,2 = nQ

(
1− 2Q

HQ

)
+

eQaQ
√

N
1+bQN

J2,3 =
eQaQQ

2
√

N(1+bQN)2

J3,1 =−
aP
√

N
1+bPN

J3,2 =−
aQ
√

N
1+bQN

J3,3 = nN

(
1− 2N

HN

)
− aPP

2
√

N(1+bPN)2
− aQQ

2
√

N(1+bQN)2

Because the equilibria with N = 0 will have a singularity
in the Jacobian, we will analyse them separately.

Equilibra with N 6= 0

At the point EN = (0,0,HN) the Jacobian becomes a lower
triangular matrix, with eigenvalues along the diagonal:

nP +
ePaP
√

HN

1+bPHN
> 0, nQ +

eQaQ
√

HN

1+bQHN
> 0, −nN < 0

and unconditional instability follows from the positivity of
the first two.

For EPN = (P̂∗,0, N̂∗) one eigenvalue is immediately
known, as the Jacobian factorizes:

J2,2 = nQ +
eQaQ

√
N̂∗

1+bQN̂∗
> 0

and this is enough to ensure once again unconditional insta-
bility.

A similar result holds for EQN = (0, Q̃∗, Ñ∗), for which

J1,1 = nP +
ePaP

√
Ñ∗

1+bPÑ∗
> 0

and also this point is always unstable.
For coexistence E∗ = EPQN = (P∗,Q∗,N∗), note the sim-

plifications:

J1,1(E∗) =−nP
P∗

HP
, J2,2(E∗) =−nQ

Q∗

HQ
,

J3,3(E∗)=
aPP∗(1+2bPN∗)
2
√

N∗(1+bPN∗)2
+

aQQ∗(1+2bQN∗)
2
√

N∗(1+bQN∗)2
−nN

N∗

HN
.

To assess stability we apply the Routh-Hurwitz conditions.
The one on the trace gives

aPP∗(1+2bPN∗)
2
√

N∗(1+bPN∗)2
+

aQQ∗(1+2bQN∗)
2
√

N∗(1+bQN∗)2
(9)

< nP
P∗

HP
+nQ

Q∗

HQ
+nN

N∗

HN
.

The sum of the principal minors of order two is

M∗2 = nP
P∗

HP
nQ

Q∗

HQ
−nP

P∗

HP
J3,3(E∗) (10)

+
aP
√

N∗

1+bPN∗
ePaPP∗

2
√

N∗(1+bPN∗)2
−nQ

Q∗

HQ
J3,3(E∗)

+
aQ
√

N∗

1+bQN∗
eQaQQ∗

2
√

N∗(1+bQN∗)2

We now evaluate the determinant:

det(J(E∗)) = nP
P∗

HP
nQ

Q∗

HQ
J3,3(E∗) (11)

− nQePa2
PP∗Q∗

2HQ(1+bPN∗)3 −
nPeQa2

QP∗Q∗

2HP(1+bQN∗)3

to establish its positivity, giving the condition

nPnQP∗Q∗

HPHQ
J3,3(E∗)>

nQePa2
PP∗Q∗

2HQ(1+bPN∗)3 (12)

+
nPeQa2

QP∗Q∗

2HP(1+bQN∗)3

The last requirement for stability, which we leave in a synthe-
tic form, reads

tr(J(E∗))M∗2 < det(J(E∗)). (13)

These conditions define a set in the parameter space that is
nonempty. This statement arises from the numerical simula-
tions, that indeed indicate that this point E∗ = EPQN can be
stably achieved, showing also that the feasibility conditions
discussed formerly are satisfied for some parameter choi-
ces. Figures 6-9 show the various possibilities, in terms of
the possible locations of the roots of the function β (N). In
particular note that whenever two such roots exist, one of
them (the smaller one) leads to an unstable coexistence equi-
librium, as it should be expected as the latter arises through
a saddle-node bifurcation as remarked earlier. For the same
reason we observe that in the top frame of Figure 9, when
both roots coalesce, the equilibrium that is generated is also
unstable.

Equilibria with N = 0

Observing the dominant behavior of the system near E0,
we have

dP
dt

= nPP
(

1− P
HP

)
+

ePaP
√

NP
1+bPN

≈ P[nP + ePaP
√

N]≈ nPP > 0,

dQ
dt

= nQQ
(

1− Q
HQ

)
+

eQaQ
√

NQ
1+bQN

,

≈ Q[nQ + eQaQ
√

N]≈ nQQ > 0,

dN
dt

= nNN
(

1− N
HN

)
− aP
√

NP
1+bPN

− aQ
√

NQ
1+bQN

≈
√

N[nN
√

N− (aPP+aQQ)],

and the consequence is unconditional instability due to the
signs of the right hand sides of the first two equations.

For EP = (HP,0,0), we find

dN
dt

= nNN
(

1− N
HN

)
− aP
√

NP
1+bPN

− aQ
√

NQ
1+bQN

≈
√

N[nN
√

N

−(aP(P−HP)+aPHP +aQ(Q−HQ)+aQHQ)]

≈−
√

N(aPHP +aQHQ)< 0,

so that along the N-axis the behavior is stable.
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Figure 6: Coexistence obtained with the following parameter
values: nN = 0,3, nP = 0,4, nQ = 0,3, HP = 150, HQ = 1200,
HN = 1500, eP = 0,8, eQ = 0,9, aP = 0,8, aQ = 0,2, bP = 0,4,

bQ = 0,1. The top frame corresponds to the initial condition near
the zero N1,β = 678,6517 of the function β (N), which is seen to

give an unstable equilibrium; the bottom one to the initial
condition taken near the zero N2,β = 1132,4, corresponding to a

stable coexistence equilibrium.

Figure 7: Coexistence obtained with the following parameter
values: nN = 0,9, nP = 0,4, nQ = 0,3, HP = 150, HQ = 1300,
HN = 1500, eP = 0,8, eQ = 0,9, aP = 0,8, aQ = 0,9, bP = 0,4,

bQ = 0,5. The top frame corresponds to the initial condition near
the zero N1,β = 258,6319 of the function β (N), which is seen to

give an unstable equilibrium; the bottom one to the initial
condition taken near the zero N2,β = 1416,4, corresponding to a

stable coexistence equilibrium.
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Figure 8: Coexistence obtained with the following parameter
values: nN = 0,9, nP = 0,4, nQ = 0,3, HP = 150, HQ = 300,

HN = 1500, eP = 0,8, eQ = 0,9, aP = 0,8, aQ = 0,9, bP = 0,4,
bQ = 0,5. The top frame corresponds to the initial condition near
the zero N1,β = 97,9228 of the function β (N), which is seen to

give an unstable equilibrium; the bottom one to the initial
condition taken near the zero N2,β = 1482,0, corresponding to a

stable coexistence equilibrium.

Figure 9: Top frame. Coexistence obtained with the following
parameter values: nN = 0,3, nP = 0,4, nQ = 0,3, HP = 150,

HQ = 1200, HN = 1500, eP = 0,8, eQ = 0,9, aP = 0,8, aQ = 0,445,
bP = 0,4, bQ = 0,2. In this case the function β (N) has just one

zero, N1,β = 948,2506, for which coexistence is unstable, the prey
drifting to negative values and vanishing in a finite time.

Bottom frame. Coexistence obtained with the following parameter
values: nN = 0,3, nP = 0,4, nQ = 0,3, HP = 150, HQ = 1200,
HN = 1500, eP = 0,8, eQ = 0,9, aP = 0,8, aQ = 0,8, bP = 0,4,

bQ = 0,2. In this case the function β (N) does not possess positive
zeros. Again, the corresponding coexistence equilibrium is not

attained.
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TABLE 2: FEASIBILITY OF ALL THE EQUILIBRIA OF THE

SYSTEM (2)

Equilibrium Feasibility conditions
E0 = (0,0,0) –

EN = (0,0,HN) –
EQ = (0,HQ,0) –
EP = (HP,0,0) –

EQN = (0,Q∗,N∗) ΦQ(N)∩ΨQ(N)
sufficient:

ΦQ(N+
Ψ′)≥ΨQ(N+

Ψ′)
EPN = (P∗,0,N∗) ΦP(N)∩ΨP(N)

sufficient:
ΦP(N+

Ψ′)≥ΨP(N+
Ψ′)

EPQ = (HP,HQ,0) –
E∗ = EPQN = (P∗,Q∗,N∗) Arising through

saddle-node bifurcation

The remaining minor of the Jacobian becomes a diagonal
matrix, as no mutual interactions of the two predators are
present:

Ĵ =

nP

(
1− 2P

HP

)
0

0 nQ

(
1− 2Q

HQ

)
giving the eigenvalues −nP and nQ > 0, thereby implying
unconditional instability.

For the point EQ = (0,HQ,0) a similar result would hold as
for EP along the N axis. Again the submatrix of the Jacobian
is diagonal, with eigenvalues nP > 0 and −nQ, showing once
again instability.

However at the point EPQ = (HP,HQ,0), these eigenvalues
are both negative, −nP and −nQ, implying for this equili-
brium unconditional stability. The fact that these eigenvalues
are real prevents any possible occurrence of a Hopf bifurca-
tion at this point.

DISCUSSION

In the Tables 2 and 3 we summarize all the equilibria beha-
vior, giving their feasibility and stability conditions.

Ultimately, only two outcomes are possible. Either the
prey disappear, and the two predators thrive at their carrying
capacities, EPQ, or the three populations coexist, EPQN . In the
former case the predators natural population levels HP and
HQ are undisturbed since they are assumed not to interfere
with each other. Furthermore, in this situation no persistent
oscillations can arise. Thus the predators are always found
at a stable level, as this point is unconditionally feasible and
stable. Note also that this result implies that in the system
the predator populations are always present, independently
of what happens for the other possible equilibrium.

Coexistence is instead not guaranteed to arise. If it does,
its onset occurs through a saddle-node bifurcation, which
implies the simultaneous appearance of two such points, of
which the one with the lower level of prey N is unstable. This
saddle point partitions the phase space through a separating
surface, so that two domains of attractions exist, one being
the one of the prey-free equilibrium EPQ and the other one of
the coexistence point E∗ = EPQN . Thus the ultimate behavior
of the system trajectories would in such case depend only on

the present state of the system, i.e. the location of the initial
condition.

The result that equilibrium EPQ is unconditionally stable,
coupled with the fact that two coexistence equilibria may ari-
se in pairs, of which one unstable and one stable, as discussed
above, indicates that in suitable circumstance bistability can
be obtained.

Indeed, Figures 6-9 show graphically this behavior. In
each case, for the same set of parameter values, the system
trajectories tend to different equilibria, the prey-free point
EPQ in the top frame and coexistence EPQN in the bottom
one, just by changing the initial conditions, i.e. depending on
the domain of attraction of which point the current state of
the system is located. This result can suitably be exploited,
so that at last bistability may result to be a very much im-
portant tool for addressing two relevant ecological problems,
namely species eradication and preservation.

In case the prey is a nuisance, bistability could be exploited
for its eradication, simply by trying to push the state of the
system in the domain of attraction of the prey-free point EPQ.
To achieve this task, two imporant remarks should be made.
First of all, such a “push” could be obtained by external, hu-
man driven means, such as insecticide spraying. Secondly,
the external measure should be exerted in an amount small
enough just to cross the separating surface, thereby also sa-
ving on costs.

If N is a species to be preserved instead, corresponding
measures for its survival should be taken, so that the state
of the system would be moved into the attraction domain of
the coexistence equilibrium. Enhancing the chances of the
species N to be preserved to survive could be achieved once
more by external means, such as fostering its reproductivity
or increasing its carrying capacity, or measures apt to reduce
the predators hunting pressure. In the last case, for instan-
ce, a “measured” culling could be decided to be undertaken,
sufficient enough to move the system trajectories into the co-
existence equilibrium domain of attraction, thereby allowing
the survival of the endangered species together with the two
generalist predators.

Note that in the above discussion, the role of the sepa-
rating surface is of paramount importance. However, where
this manifold lies is unknown. This is an important remark,
because knowing its location and the current state of the sys-
tem would allow to adequately estimate the effort to be taken
to move the system into the right attraction basin. Fortuna-
tely, to address and solve this problem, numerical schemes
based on reliable and up-to-dated state of the art algorithms
have been recently developed to numerically reconstruct in
an efficient, reliable and fast way the separatrix, (Cavoretto
et al., 2011, 2013, 2016a,b; De Rossi et al., 2018; Franco-
mano et al., 2016, 2017, 2018; Hilker et al., 2017).
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TABLE 3: STABILITY OF ALL THE EQUILIBRIA OF THE SYSTEM

(2).

Equilibria Stability conditions
E0 = (0,0,0) unstable

EN = (0,0,HN) unstable
EQ = (0,HQ,0) unstable
EP = (HP,0,0) unstable

EQN = (0,Q∗,N∗) unstable
EPN = (P∗,0,N∗) unstable
EPQ = (HP,HQ,0) stable

E∗ = EPNH (9), (13), (12)
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