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Abstract—In the analysis of anthropogenic impact on the environment arises the question of whether the shapes of preserved habitat
fragments play an important role in the conservation of wild species. In this work we use a very simple mathematical model based on a
reaction-diffusion equation to analyze the effects of geometric shape and area on the permanence of populations in habitat fragments. Our
results indicate that a dimensionless quantity calculated from a combination of biological variables is the main component that determines
if the species survives in the preserved fragment and whether its geometric shape is important. We provide a methodology to calculate
critical area sizes for which population size is most affected by fragment shape. The methodology is illustrated in a preliminary study, in
which the model is used to estimate threshold area sizes for habitat fragments of a threatened species Sapajus xanthosternos.
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Resumen—En el andlisis del impacto antrépico sobre el medio ambiente surge la pregunta de si las formas de los fragmentos de habitat
conservados juegan un papel importante en la conservacion de las especies silvestres. En este trabajo utilizamos un modelo matematico
muy simple basado en una ecuacién de reaccidn-difusion para analizar los efectos de la forma geométrica y el drea sobre la permanencia de
poblaciones en fragmentos de hédbitat. Nuestros resultados indican que una cantidad adimensional calculada a partir de una combinacién de
variables bioldgicas es el componente principal que determina si la especie sobrevive en el fragmento preservado y si su forma geométrica
es importante. Proporcionamos una metodologia para calcular los tamafios de dreas criticas para las cuales el tamafio de la poblacién se ve
mds afectado por la forma de los fragmentos. La metodologia se ilustra mediante un estudio preliminar, en el que el modelo se utiliza para
estimar el tamafio del drea limite de los fragmentos de hébitat para la manutencion de la especies amenazada, Sapajus xantosternos

Palabras clave— Area, Conservacién, Fragmento, Forma geométrica, Modelo matematico.

INTRODUCTION

andscape ecology studies traditionally use landscape
L pattern indices, a.k.a landscape metrics, to predict eco-
logical responses, they are mostly associated to patch size,
shape and habitat amount and aggregation (Gustafson, 2019).
Detailed ecological research on patch-scale alterations on
biodiversity were never as relevant, considering that half of

the forests of the planet are less than 500 m from the fo-
rest edge, and mostly are patches smaller than 10 ha (Haddad
et al., 2015). Moreover, habitat fragmentation, isolation and
creation of edge environments initiate long-term responses of
organisms and ecosystems processes that percolate through
the landscape (Haddad et al., 2015).

The edge of forests may be a barrier to animal movements
(Tuff et al., 2016; Boesing et al., 2018), thus, the area and
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shape of forest patches are appropriate metrics to assess the
effects of spatiotemporal changes in the landscape configu-
ration over biodiversity measures, such as, species richness,
community structure and organisms’ abundance (Ramalho
et al., 2014; Han et al., 2019). These alterations in landscape
patterns are also used as predictors of ecological processes,
namely the probability of population extinctions and migra-
tions (Xu et al., 2014).

Recently, a vivid debate on the importance of considering
several spatial scales to assess the changes in biodiversity
has arisen and most studies indicate that scale selection is
species-sensitive (Moraga et al., 2019). It is well-known that
anthropogenic and natural landscape alterations dispropor-
tionately impact forest-core species, which are almost four
times more prone to extinction than edge-tolerant and habi-
tat generalist species (Pfeifer et al., 2017). Accordingly, it has
been shown that forest-core species are vulnerable to hunting
and predation when moving through non-forest habitats, and
that abundance of forest-core animals is consistently larger
at about 400 m away from the edge, confirming that edge
effects operate at a small spatial scale (Pfeifer et al., 2017).

The impacts of edge effects on populations of forest-
dependent species are influenced by the ratio of forest core
in relation to forest edge. Thus, edge effects are strongly re-
lated to the shape of forest fragments, but they are less inten-
sive in the core of larger forests fragments (Nogueira et al.,
2021; Banks-Leite et al., 2010). Forest-core species are more
strongly affected in small forest fragments with convoluted
shapes (Ewers and Didham, 2008; Banks-Leite et al., 2010).
The population abundance of these forest species tend to de-
cline under edge effects and ultimately increase the risk of
local extinction (Pfeifer et al., 2017).

Traditional approaches in landscape ecology use diversity
measures, such as species richness and equitability, to explo-
re how changes in habitat structure and landscape configura-
tion may lead to species loss, alterations in the animal com-
munity composition, and biodiversity erosion (Watling et al.,
2020). Fewer landscape ecology studies address the influen-
ce of those landscape modifications on population dynamics.
Here we use population dynamics models (partial differential
equations) to understand the population vulnerabilities asso-
ciated to changes in the spatial configuration of forest pat-
ches. This approach allows us to study the link between the
spatial configuration of the habitat and the population dyna-
mics (Nabe-Nielsen et al., 2010).

The mathematical model used in the present work may be
included in the broad class of KISS models (Cantrell and
Cosner, 1994) and, although some discussion has already
been developed on the theme of critical patch size (Cantrell
and Cosner, 2001), many of the results can be computed ex-
plicitly only when applied to patches with a relatively simple
geometry. Our analysis uses a different approach, which is
based on numerical simulations over a wide variety of geo-
metrical shapes and the use of field data to fit the model pa-
rameters. Combining the strong theoretical results present in
Cantrell and Cosner (2001) with field data and precise nume-
rical simulations is a work reserved for the future.

The paper is subdivided in three other essential sections
besides this introduction. In the section “Material and Met-
hods" we present the model, the biological hypotheses and
parameters, and quickly review some metrics of fragment
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shape. In the section “Results" we deduce general ecologi-
cal results from the model and illustrate its application in a
particular preliminary study directed to a particular species
(Sapajus xanthosternos). Finally, in the conclusion section
we discuss some of the general and particular results, deli-
neating also directions for future research.

MATERIALS AND METHODS
The model

The main focus of this paper is to deduce conditions in
which the shape of a habitat fragment does have a significant
impact on the chances of conservation of a certain species
that occupies it. Since this question is quite general, we are
immediately caught in a tension, trying to avoid two oppo-
sing dangers: oversimplification of biological traits and na-
rrowness of results due to an excessive number of hypothe-
ses.

For the particular model used in this work, each species
may be represented by a combination of five basic biological
parameters: the time it would take a population to be dou-
bled under the most favorable conditions (7, in time units),
the carrying capacity in an undisturbed/preserved environ-
ment (K in number individuals per area unit), the time that
it would be necessary for the population to be halved in a
disturbed/hostile environment (7;, in time units), a disper-
sion coefficient (D units of area per unit of time) and a non-
dimensional coefficient of mobility (1) that identifies if in-
dividuals tend to disperse faster or slower in the disturbed
environment when compared to its movement in the preser-
ved areas.

Of course, under many aspects, this is an oversimplifica-
tion of any biological species, but here we argue for this ap-
proach, underlying the following points:

1. If our objective is to gain insight, from a broad perspec-
tive, on the effects of shape and area size on the survival
of species, we cannot rely on detailed dynamics which
are species-dependent.

2. This generality allows for an easier application in spe-
cific cases, requiring just a few biological parameters to
adequately apply the methodology outlined by the mo-
del. Detailed models often require the estimation of a
much higher number of parameters, many of which may
demand intricate experiments to be successfully deter-
mined.

3. As long as the model and methodology is not conside-
red as an absolute tool and is used only as a guideline
to provide rough estimates of threshold area sizes, there
should be no harm in approximating the complex popu-
lation dynamics of the real populations for the simpli-
fied one presented here.

It is worth to mention that the model is effective in illus-
trating the importance of the relations between certain sca-
les that are connected with mobility, reproduction rates and
area of the fragment. In this sense, the model should provide
some insight from the perspective of ecological theory and
conservation, going beyond the simple applications of statis-
tical methods of analysis, which, of course, have their own
importance and scope.
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The biological hypotheses

In the process of mathematical modeling it is important to
clarify the biological hypotheses assumed so that we know
exactly what is included and what is not in the dynamics pre-
sented by the model. The main assumptions considered in
our model are enumerated below:

1. The model describes the dynamics of one particular spe-
cies at a time. No interspecific relations are modeled.

2. The region to be analyzed can be divided into two
clearly different landscapes. One represents a preserved
and favorable environment to the species while the other
corresponds to a hostile ambient, where the population
could be sustained only for an definite amount of time
(extinction is unavoidable in the hostile ambient).

3. Within the preserved environment the species grows lo-
gistically up to a carrying capacity.

4. In the hostile ambient the population decays exponen-
tially.

5. Individuals are forced to move around in the environ-
ment in both types of landscapes, either due to over-
population forces, foraging or other species-dependent
factors. The particular details are not taken into account
in the model, instead, those forces are represented by
two parameters, one for movement in the preserved re-
gion and other for the hostile one.

The first hypothesis simply means that we are not expli-
citly describing complex ecological relations between spe-
cies. These relations, of course, are very important in the real
biological system and may be the decisive factor between the
survival or the extinction of a particular population. In our
approach, those relations are “embedded” in the form of the
division of the region in a preserved or hostile environment.
In the preserved region, all the ecological relations necessary
for the survival of the population are present while in the
hostile region those conditions are absent. In this way, the
analysis can be focused in just one species.

The second hypotheses is related to a very frequent occu-
rrence in the study of anthropogenic impact on wild popula-
tions. In many instances is is possible to observe a “natural”
landscape, where wild populations reproduce and a “distur-
bed” one, that has been modified to serve another purpose,
for instance, raising of cattle or agriculture (Gollnow et al.,
2018). Although the biological hypotheses do not explicitly
account for a continuous transition between those types of
environment, in the sense that each location is either clas-
sified as “preserved” or “disturbed”, the mathematical for-
mulation does provide a certain smoothness in the transition
from one scenario to the other. In this type of model, popu-
lations that live closer to the transition frontier tend to repro-
duce, on average, slower than those in more “interior” areas.

Referring to the third hypothesis, although some species
tend to conform to the specific form of Logistic growth (Bar-
low, 1992), in our model, this particular form of dynamics is
used just to represent the factual observation that every po-
pulation has its growth limited to the natural resources avai-
lable. In this case, those are supposed to be directly propor-
tional to the size of the preserved area. Similar models with
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analogous limited-growth functions (a generalized Logistic
model was used (Tsoularis and Wallace, 2002) ) were tested
and very close results were obtained, providing some eviden-
ce that our analysis is independent of the particular choice of
a Logistic growth function, but rather that the fundamental
fact is the limited carrying capacity of the environment.

The fourth hypothesis accounts for mortality in the hostile
environment. It can be proved (Tijms, 2003) that if each in-
dividual has a fixed probability of dying per time unit then
the dynamics of the whole population can be approximated
by an exponential decay. The important factor here is that the
species is tending to extinction in the hostile environment.

The last hypothesis involves the dispersion of the indivi-
duals. Animal movement is an extremely complex topic and
many factors do contribute to the observed movement pattern
at the population level. When enough data is available, pre-
cise mathematical models can be fitted to describe complex
inter and intra-specific interactions that affect movement. In
particular, Moorcroft et al. (2006) have successfully used a
reaction-diffusion equation to model wolf pack territory for-
mation in Yellowstone Park, being able to closely fit the mo-
del to empirical data on population distributions. Due to its
generality, the model we propose is much less detailed and
we do not expect such model to precisely describe the mi-
croscopic individual movement dynamics. Instead, we rely
on a macroscopic parameter, the diffusion (or dispersion)
coefficient, to represent a general tendency of dispersion,
whatever is the particular biological mechanics behind it.
Particular population estimates in well-known regions may
then be used to fit the dispersion coefficient, avoiding the
need of intricate empiric research on the movement pattern
of the modeled species (see the Case Study Section for furt-
her details).

Finally, there is the observation that individuals may mo-
ve at different speeds depending if they are in a preserved
or hostile area. While the precise estimation of such diffe-
rence may be subject to technical difficulties, we find this as-
sumption necessary, given the generality of the model, which
could be applied to many different species and terrains. In
Section “Sensitivity Analysis" we show that parameter 7,
which is related to this difference in movement, is a para-
meter that does not have a very strong impact on the equi-
librium population. Since the results are fairly robust to this
factor, the model may still be applicable even if it is not pos-
sible to estimate precisely the difference in mobility between
hostile and preserved areas.

The variables and the simulation space

The dynamics proposed occurs in a three-dimensional spa-
ce (]R3), having two Cartesian coordinates, (x,y) € R2, for
the spatial distribution and another one for time, t € R. The
population is then described by a density function u(x,y,?),
soif Q C R? represents a fragment, P(Q) = [[ u(x,y,t) dxdy
is the total population in it the fragment at time instant z. The
dimensions of x and y are compatible with length (kilome-
ter, mile, meter), while # may be expressed in individuals per
area using convenient units of population and area compati-
ble with x and y (thousands, hundreds for population; square
meters, miles or kilometers for area). The time variable may
be measured in years, months or other useful scale.
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The domain of simulation was chosen as a rectangular set
L= [a,b] X [c,d]. Each point inside the domain was classified
as being either favorable to the species (preserved habitat) or
hostile to it (impacted environment). We defined Q C L as
the set that represents the fragment of preserved habitat while
L — Q stands for the hostile environment. Figure 1 illustrates
an example of this type of separation.

The reaction-diffusion equation

Reaction—diffusion models are applied to the study of a
wide variety of natural systems. Pattern formation in ani-
mal coats (Murray, 1989), spatial distribution of slime molds
and formation of galaxies (Lin and Segel, 1988), ecological
invasion by alien species (Shigesada and Kawasaki, 1997),
chemical signalization in insects (Bonabeau et al., 1999) and
even evolutionary phenomena (Assis et al., 2018) are some
examples of applications. For an excellent review of its use
in Mathematical Ecology, we indicate the book by Okubo
and Levin (2001).

To model the population dynamics in L, we propose the
following equations:

if (x,y) € Q 1
if (x,y) eL—Q (

du | div(DVu)+ru(l—u/K)
ot div(Dy Vu) — uu

where D and Dy are the dispersion coefficients in the pre-
served habitat and the hostile environment, respectively, 7 is
the per capita reproduction rate in the habitat, u is the per
capita mortality rate in the hostile environment and K is the
carrying capacity in the preserved habitat.

The dynamics is separated in two regions, Q and L — Q.
The first term in both equations represents the mobility of
the population in each environment, so the ratio n = Dy /D
indicates where the movement is faster, if 7 > 1 individuals
move faster in the hostile environment while n < 1 means
the opposite.

The use of a diffusion equation to incorporate the characte-
ristics of complex movement patterns may be criticized as an
oversimplification. While it is true that this type of equation
may be deduced in many different ways (Perthame, 2007),
a common misconception is to think that it can only repre-
sent Brownian motion, that is, the movement displayed by
particles randomly colliding and moving in every direction.
One way to interpret differently this equation is to suppose
that, in microscopic scale, individuals carefully avoid over-
crowded regions, moving in the direction of less populated
areas in a velocity that is proportional to the stimulus given
by the Weber-Fechner law (Laming, 1989). Under such as-
sumptions, the resulting macroscopic dynamics is exactly a
diffusion equation“].

This can be seen by simply writing the term corresponding
to the flux of individuals, 7 = DVu as 7 = DuV, where

Vu

V=—; u#0.
The biological interpretation is clear now: individuals mo-
ve on the opposite direction of the gradient, but with a a

I'This interpretation came to our knowledge through personal communi-
cation with Prof. Wilson Castro Ferreira Jr. Up to date we are not aware of
any publication that treats this topic in detail
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speed/probability that is proportional to the ratio of the con-
centration difference perceived and the concentration of in-
dividuals. This ratio incorporates the effect described by the
Weber-Fechner law, that the perception of changes in the in-
tensity of stimuli is relative to the total present stimulation.
Just to give a simple concrete example of this psychophysical
law: a match lighted in total darkness provides a much hig-
her stimulus than one lighted in plain daylight. So the model
can be interpreted as implying that the population is trying to
avoid overcrowded areas, moving in the opposite direction of
increasing population density. Although the Weber-Fechner
is not an “absolute” natural law and has been subject to criti-
cism and also that alternatives formulations have been propo-
sed for modeling stimuli perception (Krueger, 1989; Nutter
and Esker, 2006), recent results seen to find new evidence
supporting it (Dehaene, 2003). In any case, here it serves the
purpose of illustrating how the diffusion equation may be re-
interpreted as portraying a more complex behavior than just
Brownian motion.

As stated in a previous section, the domain of the equation
is L = [a,b] X [c,d]. This choice of domain was made for the
following reasons:

1. A rectangular domain facilitates the implementation of
numerical methods to solve the differential equation.

2. The domain is chosen in a way so that it included that
fragment of interest () and that the boundary condi-
tions do not have a significant impact on the results.

The boundary conditions for the mathematical problems
may be homogeneous Dirichilet conditions:

oy =0 @)

where dL stands for the boundary of L. Another possibility
is to use the Robin homogeneous condition is given by:

] [ (3)
on|y,

where du/dn is the normal derivative (pointing outwards re-
gion L) and k, > 0 is a constant that defines the intensity of
the flux.

Homogeneous Dirichilet conditions imply that individuals
die at the boundaries while Robin homogeneous conditions
represents a migration that is proportional to the population
density at boundaries We will not stress too much the role
of the boundary conditions because the focus of the model
is to analyze the effect of the geometric shape and area of
Q. The domain L, in this case is just a convenient choice
that allows for an easier numerical simulation. We tested our
results using both conditions and a variety of values for k and
the results were very similar, independently of the boundary
conditions used..

One last technical observation on the model is that the-
re is a discontinuity in the diffusion coefficient. This is not
a relevant modeling problem for our particular case since,
in this work, the solution of the differential equation is ap-
proximated using a discretized version of the domain, where
discontinuities are not an issue.
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Figure 1: The image used in this example is merely illustrative. a) Rectangular satellite image of a preserved environment and surrounded
by a hostile environment. The geographical coordinates (12°0'49,60”S 55°24/29,35"W) belong to the highlighted region. Source: Google
Earth. b) The domain of the model is a rectangular box L that includes a region of preserved environment represented by Q and the
complementary region L — Q that stands for the hostile environment.The population is described by a density function u = u(x,y,) that
depends on the position in a two-dimensional space, (x,y) and a time variable 7. The boundary of the domain is denoted by dL and is
composed only of the four sides of the rectangle L.

Numerical methods

To simulate the model we first divided the domain L into
the two regions Q and L — Q and, observing that D and Dy
are constant, obtained the two partial differential equations:

%:DAu—i-ru(l—u/K), xeQ 4)
and 5
a—?:DHAu—[,Lu, xeEL—Q &)

where A stands for the two-dimensional Laplacian operator.

To approximate the solution of those equations, we adop-
ted a finite-difference scheme (centered, second order) for
the spatial Laplacian operator (A) and Runge-Kutta methods
of combined orders 2 and 3 to solve the resulting system of
ordinary differential equations. The application of these met-
hods is considered routine in numerical analysis and can be
consulted, for example, in Burden and Faires (2010).

To implement such numerical schemes we used two soft-
wares: Matlab R2016b (registered for academic use under
license number 1115837) and the open source Scilab (ver-
sion 6.1.0). Two independent teams worked on the codes,
each using a different software for comparison of results and
avoidance of coding errors. For the Runge-Kutta methods
we used the built-in functions provided by both softwares:
ode23 for Matlab and ode (with method option rk") for Sci-
lab.

Estimates for r, |l and N

The model uses five mathematical parameters to simulate
the dynamics: r, i, K, D and Dy. To estimate those parame-

ters, we need some biological estimates, as mentioned in the
Section “The model":

1. T,: supposing the conditions are very favorable to the
population (resource abundance, low competition), 7; is
the time the population takes to double its numbers.

2. T,,: supposing the whole region was transformed into a
hostile environment, 7, is how long would it take for
the population to be halved.

3. 7n: if we denote by d the average daily displacement of
individuals in the preserved habitat and dy in the hostile
environment, then 11 may be interpreted as an estimate
of dy/d. Here the time scale of one day was mentio-
ned, but it can be adapted according to the biological
convenience.

The exact method for providing those estimates are left
to the expert biologists for each case. From these three
biological parameters and some population estimates
in known areas and a least squares fit it is possible to
estimate the remaining parameters (K and D). Further
ahead in this paper we provide a case study as a guideline.

Parameter r: From the estimate of 7,, and taking into
account that, for populations that are small relative to the
carrying capacity, the Logistic growth can be approximated
by a Malthusian one, we obtain r as:

@)

T (®)

Parameter u: Since the population decays exponentially on
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the hostile environment, the instantaneous rate of decay u
can be directly obtained from the estimate 7;,,:

(7

Measures of compactness

One of the central questions approached in this paper is
to evaluate how important fragment shape is to the conserva-
tion of populations. To conduct a mathematical analysis we
need, then, some measure of “compactness” that can be used
to represent the characteristics of a certain shape, so that its
impact on population can be quantified. A discussion of the
roles of such measures and a review of some particular for-
mulas can be consulted in Li et al. Li et al. (2013). Other aut-
hors (Rutledge, 2003; McGarigal et al., 2012) present also
some shape measures commonly used in landscape ecology
analysis. Below, we briefly review some of the measures and
choose which suits best the scope of this work.

If Q is the two-dimensional set that represents the frag-
ment we denote by p(Q) as the perimeter (we suppose that
the boundary of Q can be described as a smooth function)
and a(Q) its area.

McGarigal et al. (2012)[p.104] present two of the most
common measures of compactness, PARA:

PARA = 2 (8)
a

and a Shape Index (SHAPE):
0,25p
Ja

Another possible measure is the IPQ (Osserman, 1978), gi-
ven by:

SHAPE = 9)

4ra

2

The measure given by PARA is not convenient because it
is scale-dependent, so it was not adopted in this work. SHA-
PE is not dependent on scales and it is directly related to the
IPQ.

In the IPQ measure a circle has the maximum measure of
compactness value of 1. The intuition is simple, as the pe-
rimeter increases for the same area, the measure decreases,
resulting in a value between 0 and 1. The use of the square
of the perimeter avoids the impact of scaling factors (units of
length), resulting in a reliable measure. To make the results
more intuitive, we use the acronym GE to stand for “geome-
tric efficiency” as the measure of compactness.

Here we propose a slight modification of the IPQ, using
for the measure of compactness the following formula:

—. (11)

The change is only a re-scaling of IPQ but, in our simula-
tions, the discretization of the domain causes the regions to
be transformed into a union of small squares, which also af-
fects the length of its perimeter and, to a minor degree, its
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area. Due to this slight deformation of regions, we find it
useful to use the square as the reference figure instead of the
circle. In this measure, the square has a compactness measure
of value 1.

SHAPE is directly related to GE:

1
SHAPE = —.

VGE

so any results obtained in terms of GE can be easily converted
to SHAPE and vice-versa.

12)

RESULTS

This section divided in two parts. The first is dedicated to
general results and the second to a case study of the species
Sapajus xanthosternos.

General results

For a clearer presentation, we separated the general results
into three further sections. First, the combination of parame-
ters that are important to the simulations are identified, then
a sensitivity analysis is performed and finally the impact of
geometric shape on species population is discussed.

Identifying the key parameters

Before we addressed the question relative to the impact of
geometric shape of a fragment on populations, it was impor-
tant to analyze the role of the parameters when shape was
fixed. We chose a fragment as a circle and used six parame-
ters to simulate the model: A; (total area of the fragment),
r (per capita reproduction rate in the preserved habitat), K
(carrying capacity), u (per capita mortality rate in the hosti-
le environment), 17 (mobility coefficient) and D (dispersion
coefficient).

Each simulation was conducted for a time limit of 1007,
that is, if the population is doubled in a year under the most
favorable conditions, then the model was simulated for 100
years. For each simulation, we evaluated the total final popu-
lation P (A, r, 4, K, D) and then re-scaled it according to the
maximum possible population P\jpox = A; - K, obtaining:

PviaX

This re-scaling provides an estimate of the border effects on
the fragment. For instance, if P* = 0,8, this implies that the
influence of the outside hostile environment causes a decrea-
se of 20 % of the maximum potential population in the frag-
ment.

By simulating the model it was possible to obtain the re-
scaled population as a function: P*(A,,r,i,K,D) and we
used this relation to study how the parameters affected the
survival of the species. Allowing all parameters to vary in
each simulation, the trend was not clear P* when we looked
individually at parameters A;, r, i, 1 or D, while parameter
K had no impact at all in P*. Instead, we found that P* is
dependent on the non-dimensional groupings:

Atr
V. D

o=
r=F
,

P*

13)

(14)
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and the non-dimensional parameter 1.

To illustrate such dependency, we chose three different va-
lues of A (1/10, 1 and 10) and for each value of A, the follo-
wing distributions for the other parameters was chosen:

A ~%(025,3), D~ %(0,001,0,25)

P (025,14), 1 ~%(05,2) (15

where % (a,b),a,b € R stand for a uniform distribution bet-
ween a and b. Note that once r and D are established, pt and
Dy are automatically determined by the relations it = Ar and
Dy = T]D

These intervals were conveniently chosen to illustrate the
relations and similar results are obtained with other intervals
that comprise a similar spectrum for ¢. It is worth to stress
that since &, A and 7 are non-dimensional, they are not affec-
ted by the choice of units used to describe population density.
A total of 250 random combination of parameters was chosen
for each fixed value of A. In Figure 2 we present illustrations
of how P* behaves in relation to some of the parameters, this
illustrates the important role of A and . The results were
robust to the choice of both initial and boundary conditions.

Another way to analyze the impact of the parameter is to
measure the correlation between the parameters and P*. In
Table 1 we present the Spearman coefficient Kendall (1948)
of correlation for the parameters and the variable P*. The
results confirm that o is the most important factor in the de-
termination of P*.

Another way of deriving the importance of o, A and 7
is to write a non-dimensional version of the model. By de-
fining new non-dimensional variables as w = x/\/D/r, v =

y/A/D/r,t=rt and h = u/K, model 1 is transformed to:

9%h  9%h -

oh 55t 55 th(l—h) if (wy)€Q

ot *h  I*h\ _ ~ ;A
n (8w2 + 52 Ah i (wyy)eQeL—-Q

(16)
where L and Q are transformations of the domain L and the
fragment region Q to (w,v) mapping. For the particular case
of the simulations in this section, © was taken as a circle of
area A, having a radius of R = \/A,/7, so the transformed
region Q is a circle of radius R = R/\/D/r = \/A;r/(Dr).

Re-arranging the terms, we obtain:

R 1 Asr o

S VrV D Jm
Equations 16 and 17 show that the behavior of the non-
dimensional model (which is independent of scaling) de-
pends only on the non-dimensional groupings 717, A and «
(which shall be called parameters henceforth).

The results of both the simulations and the dimensional
analysis show clearly that parameters o and A are essential
to the survival of the species. These results are biologically
intuitive: & is proportional to both A; and r, meaning lar-
ger areas and fast reproduction rates favor the survival of
the species (hence the positive correlations between « and
P*). Also, & inversely proportional to D, meaning that lar-
ge mobility associated with a hostile surrounding environ-
ment impacts negatively the population. Parameter A indica-
tes how hostile is the environment outside the environment,

a7
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being proportional to y and inversely proportional to r, with
more hostile environments leading to lower populations. Pa-
rameter 1) had a smaller influence on the final results, as can
be seen in the curves in Figure 2-d), for each fixed curve with
fixed A, 1 was allowed to vary between 0,5 and 2, with little
impact on the final re-scaled population P* which was also
confirmed by the analysis of the correlation coefficients in
Table 1.

To analyze the relative impact of parameters o, A and n
we performed a sensitivity analysis of model 16, presented
in the section below.

Sensitivity analysis

In this section we consider P* as a function of ¢, A and
n. The simulations are analogous to the ones in Figure 2.
We chose the shape of the fragment as a circle (with radius
given by Equation 17), taking all parameters with the same
distribution:

o ~A~mn~%(0,05,20). (18)
To evaluate the sensitivity we used the slopes of the direct
one-dimensional regressions (P* x o, P* x A and P* x 1,
from the multilinear regression (P* = aa + bA +cn +d), the
standardized regression coefficients and the Spearman coef-
ficient. In Table 2 we display the results of the analysis. They
clearly confirm the strong influence of parameter o, with A
and 7 playing a secondary role.

The impact of geometric shape

In the previous sections it was clearly established that o
and A are key parameters that define species survival in the
model. The simulations indicated that, for each fixed A, it is
possible to divide the region of variation of « in three quite
distinct regions. For very low values of ¢, the population is
unable to survive, with P* — 0. For very high values, boun-
dary effects have little impact on the dynamics, so P* ~ 1
with the population approaching the maximum value possi-
ble. Finally, there is an intermediate region where P* makes
a transition between those extreme values, and in this region,
the population total is strongly related to the effect of geome-
tric shape.

For very large or very small values of o, geometric shape
in unimportant, because either the area size is too big or too
small in relation to the scales of reproduction and mobility
(which is the measure that parameter ¢ incorporates). In the
intermediate region the geometric shape plays crucial role in
determining how strong is the boundary effect, which may
lead either to extinction or preservation.

The central problem analyzed in this paper can now be ad-
dressed as a very precise question: for each point in the two-
dimensional parameter space (a,A), is it possible to deter-
mine if geometric shape affects significantly the population
estimates by the model? To answer this question we desig-
ned procedures do create random shapes and also to deform
a preexisting shape, affecting its measure of compactness (as
defined in the Section “Measures of Compactness").

For each point in the (o, ) map we took an initial geome-
tric shape for the region Q, which we defined as Sp. This
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Figure 2: Seven hundred and fifty simulations of P* = Py /Pyj5x the re-scaled population inside Q. Parameters r (per capita
reproduction rate), 1] (mobility outside the fragment), A; (fragment area) and D (dispersion coefficient) were allowed to vary randomly
according to the distributions given in Equation 15. a) Results of P* in relation with A;, the behavior is strongly dependent on the values of
the other parameters. b) Results of P* in relation with r. c) Results of P* in relation with D. d) Results of P* in relation with «, for each
value of A, a clear trend can be observed, indicating that @ and A4 are key parameters to the survival of the species in the fragment.

shape had a total area equal to &’ to correspond to a di-
mensional simulation of a figure of area A; and a initial
GE, Gy = GE(Sy) larger than 0,65, to allow for variation.
By applying deformations on this initial shape we genera-
ted a set of 30 other shapes, Sy, ...,S30, with the same area
but with compactness measures Gi,Ga,...,G3o in the set
(0,05 - Gy, Gy). In the appendix we discuss in more detail the
methods used to create deformations of the initial figure as
to obtain shapes with smaller compactness values GE. This
process is then repeated 10 times, so we obtain a collection
of 300 shapes for each (a, 1) point.

For this set of shapes we simulated the non-dimensional
model for a time horizon of T = 100 (which corresponds to
the time horizon of T = 100/r in the dimensional model)
calculating the final re-scaled population P = P(S;)/a? for
each shape, where P(S;) denotes the total population inside S;
after the simulation of the model. We obtained thus numbers
between between O and 1 that correspond to the fraction of
the maximum possible population achieved by that particular
combination of parameters and geometric shape.

Given the series of points (G;,P;) relating figures with
different measures of compactness and the final re-scaled po-
pulation, it is possible then to calculate regressions of P* by
G that estimate the impact of the measure of compactness in
the final re-scaled population. Since both variables are non-
dimensional and are scaled between 0 and 1, we adopted the
slope of the linear regression to estimate the correlation, ob-
taining the impact of geometric shape as a function of & and

A, S=F(a,L).

In Figure 3 we present a scheme that illustrates the whole
process described in this section.

In Figure 4 we present examples of distributions of G j,Pj*
and a curve F (o, A) for A = 1. The distributions clearly illus-
trate that, when A = 1, we have the maximum impact of the
geometric shape for values of o € (5, 10).

In Figure 5 we present the map of slopes obtained from the
simulations, F(a,A). In the map is drawn also two curves
f((X) — 0,134860’007490604a3 (C*) and g(a) — 0’0096e0,249406
(Co4). C* is used to estimate area sizes that are greatly im-
pacted by fragment shape. To estimate this curve, for each
fixed value of A we estimated the corresponding o for which
F(A,a) was at it maximum value, next using a least squares
fit, we adjusted a curve to fit the points. In this way C* re-
presents critical points where fragment shape has maximum
impact and can be used to estimate areas sizes (A*) for which
fragment shape is very important. Finally, Cy 4 represents a
part of the level set F(o,A) = 0,4. This line allows us to esti-
mate, area sizes (Ao 4) for which fragment shape is relatively
weak (F = 0,4 and smaller for larger areas).

If we recall that o = /A,r/D we can establish approxima-
te formulas for the critical area size (A*) and relatively safe
area size (Ap 4):

2/3
4+ D (1n(2/0.1348648) (19)
r \ 0,007490604
D (1n(1/0,0096)\*
Agu~ = | —oL22220) 2
04 ( 0,2494 20)
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TABLE 1: SPEARMAN CORRELATION COEFFICIENT FOR THE SIMUATIONS OF THIS SECTION. &, HAS THE LARGEST VALUE,
ILLUSTRATING ITS IMPORTANCE TO THE SURVIVAL OF THE SPECIES. SINCE PARAMETERS A;, r AND D ARE DIRECTLY RELATED TO
O, THERE ARE ALSO A SIGNIFICANT CORRELATION.

Spearman correlation coefficient for

Parameter A=0,1 A=1 A=10
ol 0.9622 0.9748 0.8486
Al 0.5264 0.5417 0.4037
D! -0.7330 -0.6660 -0.6196
r! 0.3219 0.3308 0.4039
n? 0.2020 (0.1) -0.0113 (0.85) 0.0723 (0.26)

' All coefficients have a p-value smaller than 1078,
2 p-value inside parenthesis.

TABLE 2: RESULTS OF SENSITIVITY ANALYSIS OF MODEL 16 FOR PARAMETERS ¢, A AND 1], P* = Po /Py X IS THE DEPENDENT
VARIABLE. THE SPEARMAN COEFICCIENT AND THE SLOPES OF THE LINEAR, MULTILINEAR AND STANDARDIZED REGRESSIONS
INDICATE THAT O PLAYS THE LEADING ROLE IN THE SURVIVAL OF THE SPECIES, FOLLOWED BY A AND 7) THAT HAVE A MUCH

WEAKER IMPACT.

Slope by Method of Regression

Parameter Linear ! Multilinear 2 Standardized * Spearman *
o 0.0482 0.0479 0.8414 0.8864 (< 1074
A -0.0095 -0.0081 -0.1365 -0.2889 (< 1074
n 0.0091 0.0081 0.1319 0.2195 (< 1073)

! Individual linear regression in each parameter.
Simultaneous linear regression in all parameters.

[38)

Multilinear regression on the standardized variables (xl*

Upper bound for p-values inside the parenthesis.

Please note that the relatively small effects produced by va-
riations in 7 are not included in these equations.

A preliminary case study

In this section we present a case study for the species Sa-
pajus xanthosternos, a photo of an individual and a map of
its geographic distribution are provided in Figure 6. We must
stress that this study has the main purpose of illustrating the
application of the model and how to interpret its results. For
more robust biological conclusions concerning the species,
further empirical work in estimating the parameters should
be conducted.

It is possible to estimate r the maximum per capita growth
rate if the maximum annual growth rate of the species is
known. For this particular species, it was estimated that, gi-
ven the most favorable conditions, the population would ha-
ve a maximum growth rate of 13 % per year (da Silva et al.,
2016), which leads to a correspondent logistic growth rate of

r=1In1,13 ~ 0,1222 /year. 2D

Mortality rates in the hostile environment are harder to esti-
mate, and we had to rely on an educated guess by the expert
(co-author Gustavo Canale) to arrive at a reference value. The
information provided is that a group of 64 individuals could
not last longer than a year, if exposed continuously to the
hostile environment in this time interval. With such infor-
mation and, considering an exponential decay in the hostile

(i = %)/ /var(x) ).

environment it is possible to obtain:

U =1In64 ~ 4,1588 /year. (22)

Since Sapajus xanthosternos is an arboreal species and the
hostile environment, in this particular case, is considered to
be mostly deforested areas dedicated monoculture, indivi-
duals tend to move and disperse faster in the impacted than in
the preserved areas. The meaning here is that even though the
individuals might move faster in arboreal environment, they
tend to move more often in deforested areas, always looking
for forest cover, resulting in a higher average speed in the
open areas. Considering this information and also by expert
advice, we adopted then a value of 1 = 2, meaning that, on
average, individuals move two times faster outside the pre-
served areas.

To estimate the remaining parameters, D and K, we co-
llected information on population estimates of populations
of Sapajus xanthosternos (Culot et al., 2019) living in ecolo-
gical sanctuaries near hostile environments. Since these po-
pulation estimates are based on extrapolation from number of
individuals sighted, we selected only those studies that were
conducted in smaller regions (total area below 1000 ha) so
that these estimates can be considered more precise. It is also
worth to mention that 1000 ha is the largest forest area size
in which Sapajus xanthosternos was recorded (Canale et al.,
2013). After this process we obtained 5 fragments with dif-
ferent area sizes, shapes and populations. Such data can be
consulted in Table 3.

20
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For each point (a, 1) create
10 initial shapes of area a?.
Calculate G, the measure of
compactness for each initial
shape (G, > 0.65).

Calculate the slope of linear regression
of (Gj, P{") for each point (a, 1),
obtaining the distribution F(a, 1). In
regions where F(a, 1) = 0, shapes
have low impact on population.

¥

For each initial shape,
applying deformation
techniches, generate 30
other shapes with GE in
(0.05 Gy, Gy) and same area.

»

*

With the 300 figures obtained,
simulate the model for each
shape calculating the total
re-scaled population P*, obtaining
a collection of points (G;, P}").

Figure 3: Scheme for the simulations of geometric shape impact on population. Each initial shape is deformed, reducing its compactness,
and the impact on population recorded.The distribution S(a, 1), of linear regression slopes, measures the relation between compactness
and population levels.
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Figure 4: a) Five examples of collections of points (G*%, P}), for different values of & and fixed A = 1. For each collection we calculate the
slope of the linear regression, F(a, 1). b) F(at, 1) denotes the values of the slope of linear regression of (G}, P}), for A =1 and
o € (2,30).

To obtain images of the fragment shapes we used the soft-
ware QGIS, using the CBERS4A downloader plugin, which
provides access to the online database of CBERS4A satellite
images. The images used correspond to the years in which
the population estimates studies were conducted at each in-
dividual fragment. These are displayed In Figure 7. For each
region, the model was simulated until the population reached
an equilibrium. At the end of the simulation we calculated
the total population inside the protected region, as in Figu-
re 7, obtaining thus a vector with five population estimates
provided by the mathematical model. We then used the least
squares method to determine the optimal values of D and K
that led to the best fit.

In Table 3 we present the results from simulations using
the least squares fit for D and K. The optimal value for
D was D* =~ 9,1746 x 10~* year ' - km~2 and for K was
K* ~ 26,8033 x 10~* individuals - km~2. This particular va-
lue of K* was considered biologically plausible by the expert
biologist and within his own estimates.

With the estimated value of D* now it is possible to use
Equations 19 and 20 to establish to estimate the most sensi-
ble (A*) and a relatively safe (Ao 4) area sizes for the species
Sapajus xanthosternos. Results are presented in Table 4.

DISCUSSION

The simple model developed and the simulations allowed
us to identify clearly the most important parameters that de-
termine how strongly populations are affected by fragment
shape. The results show clearly that these parameters are
associated with mobility of the species, reproduction rate,
area of the fragment and mortality rate in the hostile envi-
ronment. All these parameters are combined in the two non-
dimensional groupings ¢ and A.

The two-dimensional mapping of the behavior of the mo-
del in relation to parameters & and A allowed us to establish
functional relationships (i.e. 19 and 20) for A*, the area size
for which the population is very sensible to geometric shape,
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Figure 5: Two-dimensional mapping of the impact of geometric shape on the population. F (e, 4) denotes the values of the slope of linear
regression of (G*, P}). Two curves A () are drawn in the mapping: C* given by the equation: f(a) = 0,1348¢0:0074906040” 44 Co 4, with

77

equation g(ot) = 0,0096¢%2494% _Curve C* is constructed by estimating, for each fixed value of A the corresponding value of a that leads
to the highest value for F (4, a) while Cp 4 is a part of the level set F (o, A) = 0,4. C* represent critical values where fragment shape has
maximum impact while Cy 4 represent a point where the impact of shape is already low.

and Ao 4, an estimate of a sufficient large are where geometric
shape does not have much impact on population size. These
relations show that the area threshold is proportional to the
mobility (represented by D) and inversely proportional to r
(rate of reproduction), reflecting the intuitive ideas that mo-
re mobile species need larger areas and those who reproduce
faster need smaller ones. Also, the fact that the parameter
that represents mortality in the hostile environment (A or )
is present as an argument of a logarithm function reflects the
fact, also shown in the sensitivity analysis, that its impact on
the area threshold is smaller.

Another, somewhat obvious, biological result that can be
derived from the equations is that species with smaller body
sizes should also need smaller areas for their preservation.
This is because smaller species tend to reproduce faster
(Dobson and Oli, 2007), meaning that parameter r should be
greater for these species, leading to smaller critical areas. Fi-
nally, more lethal hostile environments also lead to increase
in the area needed for preservation of the species. This is de-
monstrated in the results simply by recalling that A = u/r, so
any increase in  leads to a correspondent increase in A and,
since both A* and Ag 4 are increasing functions of A, any in-
crease in mortality rates in the hostile environment also leads
to larger areas needed for preservation.

Previous work on KISS models and critical patch size
(Cantrell and Cosner, 1994, 2001) present a more robust
mathematical treatment of the stability of the zero solution
(which represents extinction), while our approach (based on

simulations) provides for more flexibility in dealing with
complex geometric patch shapes. Another difference, is that
our approach does not aim to calculate a particular area si-
ze in which the population is able to survive, instead, we
identify a critical area in which geometrical shape exerts the
strongest influence on the total population. Finally, the case
study shows clearly how to use the model to estimate such
critical areas, establishing a clear methodology to use field
data.

Finally, we highlight a few points where further improve-
ment of the model and results can be made:

1. Incorporate the use of finite element methods for the
simulations of the model, since those can incorporate
better the details of geometric shape of fragments.

2. Apply the model to a number of different species and
fragments.

3. Improve the quality of parameter estimation, either by
using larger data bases with information on fragment
populations or better/more numerous estimates of re-
production/mortality rates and mobility.

4. Incorporate the mathematical methodology of estima-
ting critical patch size using eigenvalues as in Cantrell
and Cosner (1994) and Cantrell and Cosner (2001).
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Figure 6: a) An individual of the species Sapajus Xanthosternos. b) Map that reproduces appoximately the geographic distribution of the
species.

TABLE 3: DATA ON Sapajus xanthosternos POPULATIONS IN PRESERVED FRAGMENTS, AVAILABLE IN CULOT ef al. (2019) (CULOT
ET AL., 2019) AND COMPARISON WITH SIMULATIONS OF THE MODEL WITH OPTIMAL VALUES D* ~ 9,1746 x 10~* YEAR™! - KkM~2 ,
K* ~ 26,8033 x 10~* INDIVIDUALS - KM~ 2.

Region name/number  Total Area (ha)  Population estimate | Simulation ! Geographical Coordinates >

Agua Sumida - 1 240 52,80 | 51,22 (—48,29082778,—22,63317778)
Monal - 2 374 164,48 | 85,76 (—48,08360278, —22,69596944)
Pouso Alegre - 3 350 26,98 | 70,02 (—45,96666667, —22,21666667)
Mata Sdo José - 4 230 56,35 | 44,68 (—47,47743300,—22,35881600)
Sara - 5 501 76,85 | 114,69 (—48,19536111,—22,66642222)

' Number of individuals. Left: estimates based on number of sightings. Right: estimates based on simulations of the mat-

hematical model.
2 (Longitude, Latitude)
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GEOMETRICAL METHODS OF SHAPE DEFOR-
MATION

To generate figures with various values of GE, we adopted
three methods. Method 1 is based on “stretching” the figure
in one direction, method 2 is based on adding irregularities
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Figure 7: Images of preserved fragments for the Sapajus xanthosternos case study. The blue area represents an ecological reserve with
preserved environment where we have estimates for the population, the green area stands for preserved environment but not within the
reserve while the white area corresponds to the hostile environment. Name of the reserves a) Agua Sumida (1) b) Monal (2) ¢) Pouso
Alegre (3) d) Mata Sdo José (4) e) Sara (5). Simulations of the model were performed in these domains and the results were compared
with the field estimates for the populations (see Table 3).

TABLE 4: RESULTS FOR THE SPECIES Sapajus xanthosternos. AREAS WERE ESTIMATED USING PARAMETERS ESTIMATED THROUGH
SIMULATIONS (D), EXPERT ADVICE (1) AND BIBLIOGRAPHICAL RESEARCH (r) COMBINED WITH EQUATIONS 19 AND 20. A*
STANDS FOR THE SIZE ESTIMATE IN WHICH THE POPULATION IS MOST SENSIBLE TO CHANGES IN FRAGMENT SHAPE. Aq 4 IS AN
ESTIMATE FOR A FRAGMENT SIZE IN WHICH GEOMETRIC SHAPE DOES NOT HAVE MUCH IMPACT ON THE POPULATION.

Type of area (critical/safe) km? ha
A* 1 0,6132 61,32
Ao4 2 8,062 806,20

2/%
1 . ¥ . D (In(1/0,1348648)
Calculated using A* ~ = ( 0.007490604

? Calculated using Ag 4 ~ 2 ( (/})/2048296) )

at the boundaries, increasing the perimeter without stretching
the figure in any direction, finally, the method 3 is a combi-
nation of the first two. In Figure 8 we present some examples
of figures generated by the three methods.

Given a target area ary, a polygon P with nv vertices is ge-
nerated using polar coordinates, with angle a; = H%TI ,, and
ray p;, i = 0,1,--- ,nv — 1, such that the area of P is ary.
For each region P, two preserving area geometric transfor-
mations are applied on P in order to modify its measure of
geometric efficiency (GE). One of these transformation con-
sists in stretching P alongside one of the axis. The second
one consists in stretching np (out of nv) vertices for a factor
ri,i=1,2--- np

The data used in this article was create according to the
following steps:

1. Initially, for a given arg, a region P is created with
nv vertices, following a uniform distribution U([a, b))

and following a uniform distribution U ([c,d]) such that
GE > 0,65:

. Using the first transformation method on P, ten re-

gions R; are created with geometric efficiency %,i =

1,2,---,10;

. Using the second transformation method on P, ten

regions S are created with geometric efficiency
(0 2+ 5 )GE i=1,2,---,10. In this case, np is a ran-
dom Varlable followmg a uniform distribution U ([e, f])
and r; follows a uniform distribution U ([g,A]);

. Using a combination of those two methods, ten regions

T; are created like this: first, 7; is created, using the se-
Cond transformation method, with geometric efficiency

= (0,24 1) EG and then T; is created, using the
ﬁrst transformatlon method, with geometric efficiency
YEG, y < 1.
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Figure 8: a) b) and c): figures generated using method 1, the measures of compactness (GE) are 0.65, 0.58 and 0.39, respectively. d) e)
and f) figures generated using method 2, the measures of compactness (GE) are 0.67, 0.42 and 0.16, respectively. g) h) and i) figures
generated using method 3, the measures of compactness (GE) are 0.65, 0.45 and 0.32, respectively. .

For a given ary, steps 1-4 previously describe are repeated
ten times so that, for such ary, thirty regions are created.
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