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Abstract—Animal species change their residence places due to the high temporal variability in the availability of resources. Thus, animals
move to sites with higher productivity and they search environments with the necessary resources that allow it to develop the different
stages of their life cycle. Here, we present a simple mathematical model that determines a no extinction condition (stable oscillation) in
terms of the movement parameters for obligate-migration populations. We understand the obligate-migration as a movement seasonally
predictable in distinct locations, which is associated with patterns of resource distribution.

Keywords—Biology of migration, Obligate-migration, Mathematical model, Population persistence

Resumen—Las especies animales cambian de lugar de residencia debido a la alta variabilidad temporal en la disponibilidad de recursos.
Así, los animales se trasladan a sitios de mayor productividad y buscan ambientes con los recursos necesarios que les permitan desarrollar
las diferentes etapas de su ciclo de vida. Aquí, presentamos un modelo matemático simple que determina una condición de no extinción
(oscilación estable) en términos de los parámetros de movimiento para poblaciones de migración obligada. Entendemos la migración-
obligatoria como un movimiento estacionalmente predecible en distintas localidades, que está asociado a patrones de distribución de
recursos.

Palabras clave— Biología de la migración, Mogración-obligada, Modelo matemático, Persistencia de la población

INTRODUCTION

A From a mechanistic point of view, animal species could
be classified as residents or migrants Newton (2012);

Watts et al. (2018), according to mobility of their populations
to optimize their reproduction and survival Boyle (2017);
Dingle and Drake (2007). Thus, resident populations are
composed of individuals that perform all stages of their li-
fe cycle within a single geographical area, finding in it the
necessary resources for their development and reproduction
Dingle and Drake (2007); Cornelius et al. (2013b); Newton
(2008). In contrast, those needing two or more geographi-
cal areas to these biological processes are called migrants
Chapman et al. (2011); Newton (2012); Pedler et al. (2014);

Roshier et al. (2008, 2006); Singh and Leonardsson (2014).
Due to spatial and temporal fluctuation in resource availa-

bility beyond of tolerance ranges of species, they are forced
to make changes in their residence places, moving to sites
of greater productivity and appropriate environment for their
optimal development Boyle (2017); Cornelius et al. (2013b);
Romero and Wingfield (2015); Stojanovic et al. (2015). The
generated diffusion by migratory movements together to geo-
graphic and temporal variations in the resource availability,
produce corresponding changes in behavioral and physiolo-
gical characteristics Chapman et al. (2011); Cornelius et al.
(2013a); Fryxell and Sinclair (1988); Shaw and Levin (2011);
Wingfield (2003), which depend on how, when and where
the animals perform the movements. Therefore, this diffusion
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drives to the evolution of the migration patterns Fryxell and
Sinclair (1988); Griswold et al. (2010); Watts et al. (2018).

From the perspective of migration biology, migratory pat-
terns can be grou-ped in four types, namely obligated, no-
madic, partial and fugitive migration Chapman et al. (2011);
Dingle and Drake (2007); Newton (2012, 2008); Roshier
et al. (2006); Watts et al. (2018); Wingfield (2003). However,
this classification is a simplification because these migratory
types are not mutually exclusive Dingle and Drake (2007);
Watts et al. (2018). Thus, nomadic and fugitive migrations
are also called facultative migrations and therefore are mi-
gratory phenomena that respond to random fluctuations in
the resources availability with which are unpredictably af-
fected in space and/or time Boyle (2017); Chapman et al.
(2011); Cornelius et al. (2013a); Griswold et al. (2010); Kok-
ko (2011); Swingland et al. (1983). The focus of this paper
is the obligate migration, also known as calendar migrants,
in this type of migration all individuals within the population
make regular annual trips between the wintering and bree-
ding areas, which may include stopovers to rest and / or mo-
ve. The patterns of movement in this migration are associated
with the distribution of resources, so the position of the po-
pulation can be predicted temporarily Chapman et al. (2011);
Newton (2012); Watts et al. (2018).

One of the basic principles stimulating the animal migra-
tion is the variability of the resources availability both in time
and space, which allow to predict when and where species
will move Chapman et al. (2011); Cornelius et al. (2013b);
Stojanovic et al. (2015); Watts et al. (2018). Particularly, spe-
cies that perform forced (obligate) migrations are characteri-
zed to travel consistently in time, space, distance and mo-
vement direction from one site to another to exploit resour-
ces sufficiently predictable Cornelius et al. (2013a); Chap-
man et al. (2011); Cornelius et al. (2013b); Griswold et al.
(2010); Kokko (2011). In this kind of migration, populations
present a periodic or regular movement pattern in relation
with the pursuit of seasonally predictable resources Kokko
(2011); Swingland et al. (1983); Wingfield (2003), which
permit to development all stages of their life cycle. Thus, the
places to which the populations move are commonly bree-
ding or hibernation sites Lande et al. (2017). In these cases,
the location of the species is represented by a function that
depends on the time that the species remains in a place to
develop some stages in its life cycle and the speed at which
it performs the migratory movement. In addition, residence
place influences both the intrinsic growth rate, and the load
capacity or medium support, Arditi et al. (2016); Carlos and
Braumann (2017); Singh and Leonardsson (2014). Thus, the
study of population dynamics in migrating species through
logistic model with intrinsic growth rate and load capacity
depending of the position will show a new and more real sce-
nario to know the migration dynamics of populations.

The development of this paper is presented in six sections,
in the first one, a description is made of the mathematical
model that describes the population dynamics in which the
intrinsic rate of growth and the carrying capacity depend on
the position function; second, it shows how the population
abundance is described by means of a discrete mapping, be-
sides these the fundamental work theorem is presented; third
and fourth, illustrates the sensitivity of population abundance
with respect to the parameters of the model; fifth, the discus-

sion centered on the theorem described in session three and
sixth, the appendix, where the lemmas and their demonstra-
tions that serve as theoretical support to the development of
the article are presented.

MATHEMATICAL MODEL

The population obligate-migration model

The logistic model is a classic to represent increase in the
population abundance Arditi et al. (2016, 2018); Carlos and
Braumann (2017), when there is dependence on the density
in the per capita rate of growth. This assumes that this ra-
te is a linearly decreasing function of the population den-
sity. Thus, considering a habitat of constant size, the logistic
model assumes constant intrinsic growth rate r and carrying
capacity K, where λ = r/K is the growth loss by the unit in-
crement of the population size, which is a measurement of
the intensity of intraspecific competition.

If we consider a population that develops its activities in
a one-dimensional macro area I = [−a,+a], a > 0, also we
will assume that the population location is visualized (at a
convenient scale) as a point in the I interval and therefore,
the location at each instant is given by periodic functions (i.e.
of period the unit of time) φτ,ν : R→ I, so that the position
of the population at time t is φτ,ν(t), where τ is a parameter
associated with the immobility time and ν is one related to
the displacement speed.

Assuming that the population abundance follows a logistic
(r,K)-model , K = r/λ , we have that at certain time t ∈ R
and place x ∈ I, the intrinsic growth rate is r[t,x], this is, it
depends functionally of the location x at that instant t. That
is to say,

r = r[t,φτ,ν(t)] (1)

then, by denoting by N(t) the abundance of the population at
time t, and assuming that the intensity of instraspecific com-
petition λ remains constant, we have the following abundan-
ce model:

N′(t) = r[t,φτ,ν(t)]N(t)
{

1−λ
N(t)

r[t,φτ,ν(t)]

}
(2)

From (2), integrating N(·)/N′(·) over the interval [0,s], for
a posterior convenient second integration for s∈ [0, t], we get:

N(t) =
N0 exp

(∫ t
0 r[s,φτ,ν(s)]ds

)
1+λ N0

∫ t
0 exp(

∫ s
0 r[µ,φτ,ν(µ)]dµ)ds

(3)

Intrinsic growth rate: We will consider that given a position
in the space x ∈ I, the intrinsic growth rate as a function of
time, denoted by r[t,x], follows a cyclical behavior, a perio-
dic pattern, since the conditions (resources) in this place x are
regulated by the annual seasonality. In addition, we will as-
sume that if at one end of the space [−a,a] the conditions are
favorable, they are not towards the other one, and vice versa,
when in one edge the conditions get worse, towards the other
one they improve. The case to consider for (t,x) ∈ [0,1]× I,
by simplicity is:

r[t,x] =
1
2

{
[r(t,+a)− r(t,−a)]

x
a
+[r(t,+a)+ r(t,−a)]

}
,

(4)

28



REVISTA DE MODELAMIENTO MATEMÁTICO DE SISTEMAS BIOLÓGICOS - MMSB, VOL. 3, No. 1, abril 2023

Figure 1: The intrinsec rate of growth plot as a time-state function. The migratory rute is described in dark straight lines. The axis
corresponds to trajectory and time. The parameters are fixed as t = [0,1], λ = 1, r	 = r⊕ = 1,−a =+a = 1, τ = 0.2 and ν = 6.

where r(t,+a) = r⊕ cos(2πt) and r(t,−a) = −r	 cos(2πt),
with some positive constants r⊕ and r	. The graph of the
function r[t,x] is the wavelike and rectified surface that is
visualized in Fig.1.

Population trajectory: The idea, in terms of trajectory to
model, is that the population will remain in a place with the
highest rate of favorable growth (v.g. positive) at one end of
the space (v.g. x = a), but by seasonality, it will vary to an
unfavorable one (v.g. negative) and if the population remains
in such a place it will be affected. Then there will be a time
when it should migrate looking for a positive rate. If it gets
to this place, the other end of the space (v.g. x = −a),where
it gets a positive rate again, it will remain there for another
time. But at some point it will also vary negatively and it
will return to the original end, completing the cycle (a unit
of time). Assuming that the population moves at a constant
velocity ν , ν > 0, the total time in transit is 4a/ν . Therefore,
the time in stillness at the ends is 1− 2a/ν . Suppose that
it is divided between two periods τ⊕ and τ	 depending on
how much time it is respectively in x = +a o x = −a. The
population cycle is given four steps: remains in x = a and
migrate to x = −a, stay in x = −a and return x = a. Total
time is shown in the following equation:

τ⊕+ τ∗+ τ	+ τ∗ = 1, (5)

in which τ∗ := 2a/ν < 1/2, is assumed, so that the popula-
tion has the possibility of completing the cycle. In order to
reduce the parameters in view, we will denote τ⊕ = τ and
τ	 = 1− (τ +2τ∗), subject to:

τ < 1−2τ∗ and τ∗ < 1/2 (6)

In this way, the function φτ,ν : R→ [−a,a] of locating the

population in space-time is:

φτ,ν(t) =


a if t ∈ [0,τ],

a−ν(t− τ) if t ∈ [τ,τ + τ∗],
−a if t ∈ [τ + τ∗,1− τ∗],

a+ν(t−1) if t ∈ [1− τ∗,1]

(7)

Note that φ ′τ,ν(t) = 0 or φ ′τ,ν(t) =±ν , it changes sign, posi-
tive or negative, depending on whether the path is with ori-
gin or destination x =−a. See the pieceswise linear graph in
Fig.1.

TABLE 1: VARIABLES AND PARAMETERS.

Concept Concept
Time t Stay time in x = a τ

Population abundance N(·) Velocyti of displacement ν

Initial abundance N0 Territory’s left edge. −a
Intrinsic rate of growth r[ · ] Territory’s right edge. +a
Intra-competition factor λ Amplitude of r in x =−a r	
Position in the space x() Amplitude of r in x =+a r⊕
Location function φτ,ν (·)

ANALYSIS AND RESULTS

The abundance equation (3) considers the term r[t,x], with
x = φτ,ν(s), so that

r[s,φτ,ν(s)] =
1
2

cos(2πs)
{
[r⊕+ r	]

φτ,ν(s)
a

+[r⊕− r	]
}
(8)

where φτ,ν(·) is given by (7). The graph of r[t,φτ,ν(t)], t ∈
[0,1] is shown in Fig. ?? (r[·] vs. φτ,ν ) and Fig. ?? (r[·] vs. t).

In order to know the dynamic behavior of the long-
term population size, discrete mapping will be studied Mk :
[0,∞) → [0,∞) that relates the abundances between two
terms of consecutive cycles. Note that there is a one-to-one
correspondence between fixed points of Mk and 1-periodic
trajectories of the abundance equation (2).
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(a) r vs. φτ,ν

Figure 2:

(a) r vs. t

Figure 3: Rate of growth according to (a) trajectory φτ,ν . The axis
corresponds to trajectory and time. In (b) the axis corresponds to

rate of growth and time. In both graphs the parameters are fixed, as
t = [0,1], λ = 1, r	 = r⊕ = 1,−a =+a = 1, τ = 0.2 and ν = 6.

About the definition of Mk(·), note that denoting N j =
N( j), j ≥ 1, we have from (2) the Nk+1 = Mk(Nk) relation,
where Mk : [0,∞)→ [0,∞) is defined by:

Mk(N) =
N η(k,k+1)

1+λN
∫ k+1

k η(k,s)ds
, (9)

with η(s, t) = exp
(∫ t

s r[u,φτ,ν(u)]du
)

Consequently, using (9), Lemma 1 and Lemma 2 in the
Appendix, we have that the map Mk(·), relating the abundan-
ce at the beginning of two consecutive cycles, is autonomous
of the time variable k. Then:

Nk+1 = M (Nk) =
η(0,1)

1+λD Nk
Nk (10)

where D =
∫
[0,1] η(0,u)du and

η(0,1) = exp
{

ν
r⊕+ r	

8π2a
A (2πτ∗,2πτ)

}
(11)

with A (u,v) = [1− cos(u)] [1+ cos(v)] + sin(v)sin(u), for
k ≥ 0.

So that, by simple successive replacements of (10) on
itself, the formation of a geometric progression, and proving
by induction (over time parameter k), it is clear that its solu-
tion is given by:

(a) If η(0,1) 6= 1,

Nk =
η(0,1)k

1+λDN0
η(0,1)k−1
η(0,1)−1

N0, k ≥ 0 (12)

where N0 is the initial abundance.

(b) If η(0,1) = 1,

Nk =
1

1+ k λDN0
N0, k ≥ 0 (13)

Notice that the future behavior of sequence {Nk} depends
strongly on whether the value of η(0,1) is greater than, less
than or equal to one.

Theorem 1 Let us consider (10). Apart from the zero abun-
dance equilibrium, the unique positive one, that exists when
η(0,1)> 1, is

N∞ :=
1

λD
{η(0,1)−1}

In addition, the asymptotic scenarios are:

(1) If τ < 1/2 (i.e., η(0,1) > 1), then monotonously Nk →
N∞ as k→ ∞. This is, abundance defined by (2) tends
to follow an oscillatory behavior (with period one)
globally asymptotically stable. See Fig.4a, Fig.5a and
Fig.5b.

(2) If 1/2 < τ < 1− 2τ∗ (i.e., η(0,1) ≤ 1), then monoto-
nously Nk→ 0 as k→ ∞. Therefore, the population ne-
cessarily goes to extinction at future time. See Fig. 4a.

Proof: If η(0,1)> 1, assertion (1) follows immediately from
(12) dividing by η(0,1)k and taking the limit as k→∞. When
η(0,1)< 1, we have to take the limit directly for getting (2).
The case (3) follows if η(0,1) = 1. In addition, for knowing
the sign of η(0,1)− 1, by (11) it is necessary the study of
signs of function A(2πτ∗,2πτ) in terms of the parameters τ

and τ∗. See Lemma 3 in Appendix. �

(a) τ < 1/2

Remark 1: Notice that τ is the time that remains on the ed-
ge a and τ∗ = 2a/ν is the time it takes the population to
reach the other end of the habitat. Therefore, according the
Theorem 1, the population persists only when τ < 1/2 and
τ < 1−2τ∗. Thus, there is a minimal habitat crossing speed
to overcome, a kind of “escape speed", which equal to 2a/τ .
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(a) 1/2 < τ < 1−2τ∗

Figure 4: Population dynamics during the first cycle with five
initial conditions: N01 = 4, N02 = 5, N03 = 7, N04 = 9, N05 = 11. In

both the vertical axis corresponds to population abundance N(t)
and horizontal axis corresponds to time t. Some parameters are

fixed, as λ = 1, r	 = r⊕ = 1,−a =+a = 1. Population dynamics:
in (a) parameters satisfy assertion (1) of Theorem 1 with τ = 0.2
and ν = 6. In (b) parameters satisfy assertion (2) of Theorem 1

with τ = 0.9.

SENSIBILITY OF ABUNDANCE TO THE PARA-
METERS.
Average abundance N∞

The Theorem 1, when η(0,1) > 1, shows an abundance
of stable equilibrium N∞, which determines a periodic trajec-
tory, given by the initial condition:

N∞(r⊕,r	,λ ,a,τ,ν) =
η(0,1)−1

λ
∫ 1

0 η(0,z)dz
(14)

Remember that

η(0,1) = exp
{

ν
r⊕+ r	

8π2a
A (2πτ∗,2πτ)

}
(15)

with A (u,v) = [1− cos(u)] [1+ cos(v)] + sin(v)sin(u), for
k ≥ 0. It shows the different scenarios of the population dy-
namics N∞ to changes in the parameters as shown in Fig.6
and Fig.7:

Population abundance vs. parameters: τ , ν and r	
According to the definition (7), the parameter τ indicates

the permanence at the edge φτ,ν(t) = a for t ∈ [0,τ]. At that
place, at time t = 0, it is in the rate of maximum positive
growth r⊕, this will go down to become negative at t = 1/4.
There is a great variability regarding how the moment (τ),
in which that location is abandoned, influences the dynamics
during a cycle t ∈ [0,1], since in t = 1 it returns, as shown in
Fig. ??. In general, it is observed that if choosing the time of
permanence in the initial position well, the better it will be to
chase of the high values of r. Note that a late abandonment
could mean a clear risk of extinction, as shown in Fig.6. It
should be noted that when the population remains in the same
place during the whole period of time (τ = 1), the conditions
are not favorable in the place and the population tends to zero
slowly, as shown by the dotted line of Fig.6.

Population dynamics are being affected by different para-
meters that modify their evolution. The parameter τ refers to

(a) τ < 1/2 (b) τ < 1/2

Figure 5: Population dynamics during the first cycle with different
initial conditions, the full angle corresponds to a unit of time and
radial length to abundance. In both some parameters are fixed, as

λ = 1, r	 = r⊕ = 1,−a =+a = 1. In (a) there are three initial
conditions as N01 = 4, N02 = 5, N03 = 7. In (b) there are three
initial conditions as N04 = 9, N05 = 11, N03 = 7, besides this

parameters satisfy Theorem 1 with τ = 0.2 and ν = 6, so
population dynamics tends to the stable state.

Figure 6: Populatation dynamic N∞(r⊕,r	,λ ,a,τ,ν) vs.
parameters τ . Vertical axis corresponds to population abundance

N∞(·) and horizontal axis corresponds to parameter τ . Some
parameters are fixed, as λ = 1, r	 = r⊕ = 1,−a =+a = 1. In

Population dynamics, parameters satisfy assertion (1) of Theorem
1, τ < 1/2 for all values of τ .

the residence time of the population at a certain stage before
starting its journey at a speed ν . The graphs show the popula-
tion dynamics through time in different scenarios generated
by the change in the parameters.

There is another parameter r	 that represents Left ampli-
tude in the growth rate presenting the population dynamics.
As shown in Fig.9, this parameter does not affect the beha-
vior in the abundance dynamics of the population, but it helps
to improve its quantity, so that the greater the amplitude, the
better the abundance.
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Figure 7: Populatation dynamic N∞(r⊕,r	,λ ,a,τ,ν) vs.
parameters ν . Vertical axis corresponds to population abundance

N∞(·) and horizontal axis corresponds to paramete ν . Some
parameters are fixed, as λ = 1, r	 = r⊕ = 1,−a =+a = 1. In

Population dynamics, parameters satisfy assertion (1) of Theorem
1, τ < 1/2 for all values of ν and τ < 1−2τ∗.

(a) Population-τ

Figure 9: Sensitivity to parameter r	. The vertical axis
corresponds to N(t) (population abundance) and horizontal axis

corresponds to time. Some parameters are fixed, as t = [0,1],
λ = 1, r⊕ = 1,−a =+a = 1, τ = 0.2 and ν = 6. There are three

conditions for r	 denoted by ri	 as r1	=0.5, r2	 = 1.0, r3	 = 2.0
for different population dynamics.

DISCUSSION

General dynamics of the abundances in the scenario pre-
sents an oscillating behavior with an upward trend or a de-
crease that stabilizes in the long term in an oscillatory re-
gime (periodic) in a calendar year, as the Fig. 6a y Fig. 6b.
show. Regardless of the initial condition, there is a tendency
to a periodic defined by the parameters considered, which are
four:(a) those associated with the trajectory τ and ν , and (b)
Those related to the growth rate r⊕ and r	, except for the
spatial competition a and competition inter-specific λ . Parti-
cularly important for the population are those defined in (a),
since the species depend on them and are related to adapta-
tion, which in the long term can be altered by evolutionary
factors. As for τ and ν , as determinants of the dynamics, in
the short term, it can be observed that when passing a cycle
one has:

(a) Population-ν

Figure 8: Sensitivity to parameters τ and ν . In both the vertical
axis corresponds to N(t) (population abundance) and horizontal

axis corresponds to time. Some parameters are fixed, as t = [0,1],
λ = 1, r	 = r⊕ = 1,−a =+a = 1 and ν = 50. There are five

conditions for τ denoted by τi as τ1 = 0.01, τ2 = 0.25, τ3 = 0.501,
τ4 = 0.75, τ5 = 0.92 in (a) for population dynamics, in the other
hand in (b) τ = 0.2 and there are five conditions for ν denoted by

νi as ν1 = 0.8, ν2 = 1.8, ν3 = 2.9, ν4 = 3.9, ν5 = 5.0.

Note that according to (5) τ is the dwell time of the po-
pulation at the far right of the space [−a,a]. In this ex-
treme, the growth rate is r[s,φτ,ν(s)] = r+ cos(2πs) to
s ∈ [0,τ], that is, τ is the residence time from the mo-
ment in which the p.r.g. It presents its highest value and
begins to decline. Fig. 3 (a) shows that, compared to the
abundance after a cycle, if the population leaves the site
quickly, it presents a more favorable environment than
that which would have had to wait a while at the site. On
the other hand, if the population delays the place late, it
can be worse than choosing to stay in the place.

The function φτ,ν(·) defined in (5) indicates that ν re-
presents the speed of displacement from one end of the
space to another [−a,a]. Fig. 3. shows that in principle
high speeds allow a better yield in abundance, taking ad-
vantage of the best growth rates provided that τ < 1/2,
otherwise, the abundance of the population tends to ze-
ro.

Assuming that the conditions of the species are favorable
and can meet the assumptions so that the abundance of its
population converges to an oscillating but stationary regime,
defined by an initial condition of abundance that after a cy-
cle is the same, a natural question is what is the combination
of these traits that optimize this initial condition so that it
defines the final seasonality ?, example of this is the avera-
ge population shown in Fig. 5 and Fig. 6. In both cases the
population abundance reaches stability condition.

APPENDIX

Lemmas and their demonstrations are presented in which
the calculations are supported.

Lemma 1 Considering the periodicity of the function φτ,ν(·)
and that of the components of r[·,x], we have the following
equality∫ k+1

k
r[s,φτ,ν(s)]ds = ν

r⊕+ r	
8π2a

A (2πτ∗,2πτ) (16)
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where A (u,v) = [1− cos(u)] [1+cos(v)]+sin(v)sin(u), for
k ≥ 0.

Proof: From the definitions (8) and (7), making the neces-
sary composition it is obtained (8). Denoting the integral of
r[·,φτ,ν(·)] on [k,k+ 1] by Jr(k), k ≥ 0, the periodicity of
the functions involved implies:

Jr(k) = Jr(0) =

r⊕+ r	
2a

∫ 1

0
φτ,ν(s)cos(2πs)ds+

r⊕− r	
2

∫ 1

0
cos(2πs)ds (17)

Since the last integral is zero, by integrating the first term to
the right of equality by parts, this value is reduced to

Jr(0) =−
r⊕+ r	

4πa

∫ 1

0
φ
′
τ,ν(s)sin(2πs)ds

Considering that φ ′τ,ν(·) = 0 over the intervals [0,τ] and [τ +
τ∗,1− τ∗], we have

Jr(0) =

− r⊕+ r	
4πa

{
−ν

∫
τ+τ∗

τ

sin(2πs)ds+ν

∫ 1

1−τ∗
sin(2πs)ds

}
(18)

Thus, solving the integrals

Jr(0) = ν
r⊕+ r	

8π2a

{
cos(2πs)|11−τ∗ − cos(2πs)|τ+τ∗

τ

}
As the trigonometric expression between braces, after
the cosine decomposition of a sum, it is equal to [1 −
cos(2πτ∗)][1 + cos(2πτ)] + sin(2πτ)sin(2πτ∗). It follows
the expression (16). �

Lemma 2 The periodicity of the function φτ,ν(·) and that of
the components of r[·,x], imply η(k,k+1) = η(0,1) and

D :=
∫ k+1

k
η(k,s)ds =

∫ 1

0
η(0,u))du (19)

for k ≥ 1. that is, Mk defined by (9) does not depend on k,
k ≥ 1.

Proof: This is immediate from (9) and (16). �

Lemma 3 Note that, with the notation τ∗ = 2a/ν , u = 2πτ∗
and v = 2πτ , we have:

(A) If τ ∈]0,1/2[, then A (u,v)> 0.

(B) If τ ∈] 1
2 , 1−2τ∗[, then A (u,v)< 0.

Proof: Since A (u,v) = [1− cos(u)] [1 + cos(v)] +
sin(v)sin(u), by trigonometric identities (expres-
sing sin(u − v) in terms of sine and factoring de
difference cos(v) − cos(u)), we have that A (u,v) =
4sin [(u+ v)/2]sin [u/2]cos [v/2]. that is,

A (2πτ∗,2πτ) = 4sin [π (τ∗+ τ)]sin [πτ∗]cos [π τ] (20)

Since τ∗ < 1/2, we have 0 < πτ∗ < π/2, then sin(πτ∗)> 0.
Therefore, we have

sgn{A (2πτ∗,2πτ)}= sgn{sin [π (τ∗+ τ)] cos[πτ]}

Two cases:

(A) If τ∗ < 1/2 and 0 < πτ∗ < π/2 then τ < 1/2 and
πτ < π/2 so cos[πτ] > 0 now sin[π(τ + τ∗)] =
sin[πτ +πτ∗]> 0. So that, sgn{A (2πτ∗,2πτ)}> 0.

(B) if τ∗ > 1/2 then π > πτ > π/2 so cos[πτ] < 0 now
−sin[π(τ + τ∗)] = sin[πτ + πτ∗] where πτ ∈ [π/2,π]
and πτ∗ ∈ [0,π/2] so sin[πτ + πτ∗] < 0 So that,
sgn{A (2πτ∗,2πτ)}< 0.

Thus the proof is concluded. �
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