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mat. sist. biol. publicará tres números regulares por cada vo-
lumen, en los meses de: abril, agosto y diciembre de cada año. 

La Rev. model. mat. sist. biol.  se reserva el derecho de pu-
blicar volúmenes especiales que pueden ser dedicados a 
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ta, bajo la licencia Creative Commons Reconocimiento 4.0 
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publicados originalmente. Véase Políticas de apertura  de la 
revista en:  Sherpa Romeo  AURA - Amelica

9. Para los lectores: se autoriza la reproducción total o 
parcial de los textos aquí publicados siempre y cuando se 
cite debidamente la autoría y fuente completa, así como la 
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10. La responsabilidad de sus autores/as y de las opinio-
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Editorial

¿MODELOS MATEMÁTICOS?, ¿PARA QUÉ?

Dr. Fernando Momo
Universidad de General Sarmiento, 

Provincia de Buenos Aires, Argentina

El modelamiento matemático de procesos biológicos es 
una actividad de larga tradición científica, así como lo es 
el modelamiento matemático en todas las ciencias, desde 
las ciencias naturales canónicas, como la Física, hasta las 
ciencias sociales y humanidades. Es más, hasta podríamos 
pensar que esta actividad aplicada a problemas biológicos 
ya puede considerarse una disciplina en sí, e incluso una 
ciencia independiente (tiene bien definidos sus objetos de 
estudio, sus metodologías, su vocabulario mínimo).

Pero claro, en toda actividad científica es saludable tomar 
conciencia y reflexionar de manera sistemática y habitual 
acerca del sentido de nuestra tarea, de su porqué y su 
para qué. En este caso, nos proponemos explorar algunas 
cuestiones metodológicas y epistemológicas que parecieran 
estar todavía en un terreno de discusión o, al menos, en un 
terreno de diversidad de interpretaciones.

Veamos; este es un texto editorial que se publica en 
una Revista de Modelamiento Matemático de Sistemas 
Biológicos. Entonces, ¿tiene sentido interrogarse acerca 
de los objetivos del modelamiento? ¿Qué queremos lograr 
cuando modelamos matemáticamente? ¿Porqué nos 
interesa particularmente modelar estos sistemas y qué de 
nuevo, especial o importante pueden aportar los modelos 
en este terreno?

Si hacemos un breve recorrido en alguna bibliografía 
fundamental del tema, veremos que las interpretaciones y 
respuestas no son uniformes y tienen enfoques sutilmente 
variados.

Por ejemplo, Teresa González Manteiga1, en su excelente 
libro, coloca a las matemáticas en un lugar privilegiado, 
como ciencia central. Apoyada en abundantes citas, que 
incluyen físicos como Galileo o Newton, filósofos como 
Kant o Manero, y hasta poetas como Paul Valéry, esta 
autora coloca al modelado matemático en el lugar del 
descubrimiento y la abstracción de los principios últimos 
de la naturaleza. Como vemos, una posición que va mucho 
más allá de la usual idea instrumental del modelado. En 
el otro extremo tenemos definiciones que apuntan a la 
matemática como herramienta. Hastings2, en su libro 
de dinámica de poblaciones, dice escuetamente que el 
objetivo de la biología de poblaciones es comprender 
y predecir la dinámica de las poblaciones y que el 
entendimiento, explicación y predicción de esa dinámica 
requiere de modelos matemáticos. Como vemos, lo que 
se subraya es un papel auxiliar en el cual el énfasis está 
puesto en el problema biológico en sí y la matemática 
toma un papel subsidiario pero útil, porque permite un 
formalismo que facilita la comprensión y también la 
predicción cuantitativa. Este enfoque ha sido dominante, 
sobre todo, en el modelamiento matemático dentro de la 
ecología de poblaciones, olvidando de hecho que muchos 
de los conceptos puramente ecológicos que se enseñan 
como leyes tienen su origen en el análisis de los modelos; 
por ejemplo, el principio de exclusión competitiva en la 
formulación de Gause3.

En una zona intermedia se ubican algunos otros autores; 
por ejemplo, Gillman y Hails4 sostienen que un modelo 
ecológico debe ser capaz de describir los cambios en las 
variables de interés (por ejemplo, densidad poblacional) 
con algún grado de exactitud, y también que dichos 
modelos deben expresarse matemáticamente en razón de 
la brevedad y formalismo de la descripción, la posibilidad 
de manipulación del modelo y la posibilidad de descubrir 
propiedades emergentes que no son aparentes ante el 
razonamiento no matemático. Como vemos, aquí aparece 
una novedad fundamental que tiene que ver con el carácter 
iluminador de los modelos matemáticos en tanto capaces de 
mostrar lo que no se veía. Esa idea subyace en otros textos, 
como el delicioso libro de Hernández y Velasco Hernández5, 
en el cual los autores nos advierten los peligros de limitar 
el uso de los modelos matemáticos a la mera predicción 
y abogan, por el contrario, por un manejo más ambicioso 
donde el uso de los modelos puede incluso poner a prueba 
hipótesis o profundizar nuestra comprensión de sistemas 
muy complejos. De hecho presentan una analogía muy 
bonita, según la cuál los modelos matemáticos pueden 
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considerarse también como instrumentos de observación: 
para observar lo muy lejano podemos usar un telescopio; 
para observar lo muy pequeño, un microscopio; para 
observar lo muy complejo, los modelos matemáticos. Es 
una idea provocadora y estimulante.

En su trabajo clásico acerca de los modelos en ecología, 
Pielou6 clasifica los mismos según su uso y los verbos y 
expresiones que utiliza para designar las funciones de 
los modelos son: explicar, predecir, generar hipótesis 
testeables, servir como patrones ideales contra los 
que contrastar los procesos reales. Tenemos aquí unas 
funciones adicionales a las que venimos comentando. 
¿Podemos pedirles más cosas a los modelos? Pues parece 
que sí, porque cuando abrimos el espectro más allá de 
lo ecológico y los llevamos a todos los fenómenos que 
estudia la biología no encontramos con otros tópicos que es 
necesario tener en cuenta para definir mejor el alcance del 
modelado matemático. Por ejemplo, en el excelente libro de 
Esteva y Falconi7 se afirma que “La modelación matemática 
ofrece una herramienta de investigación que permite al 
biólogo estudiar la esencia de un fenómeno y dejar de lado 
detalles que no son relevantes para su comprensión”, una 
visión que se relaciona íntimamente con la metáfora que 
ya mencionamos del instrumento de observación y con 
el espíritu mostrado en el libro de Manteiga abogando 
por la matemática como el camino privilegiado para la 
abstracción y la elaboración de principios generales a partir 
de casos particulares. Otro punto muy delicado y relevante 
que plantea en su introducción el libro de Esteva y Falconi 
es el del carácter profundamente interdisciplinario de la 
biología matemática y recalca que “[…] sin un conocimiento 
profundo de la biología es imposible fundamentar un 
modelo matemático y saber si es interesante o irrelevante”.

Esto nos lleva a los dos últimos tópicos que me gustaría 
plantear antes de intentar una síntesis del asunto. En 
primer lugar, el problema de la naturaleza particular de 
los sistemas biológicos y cómo dicha naturaleza influye 
en lo que podemos o no hacer a partir de los modelos 
matemáticos; esto está brillantemente desarrollado en un 
artículo de Germinal Cocho Gil8, publicado como capítulo 
de un libro coordinado por Sánchez Garduño; Miramontes 
y Gutiérrez Sánchez. Allí el autor nos presenta dos ejercicios 
de hermenéutica diatópica planteando las oposiciones 
entre dos escuelas de la biología evolucionista y también 
la clásica contradicción Evo-Devo. Lejos de agotarse en una 
simple descripción histórica, Cocho nos muestra cuestiones 
que se anclan en algunas características esenciales del 
mundo biológico, en particular el hecho de que los sistemas 
biológicos son históricos, dinámicos y mutables y, por lo 
tanto, difíciles de encasillar con definiciones estáticas por 
un lado; y, por otro, la existencia de una jerarquización 
de niveles de complejidad (lo cual implica también una 

jerarquización de controles y retroalimentaciones) en 
cualquier estructura biológica funcionando. Aquí pasa a 
jugar un papel importante la cuestión termodinámica (otra 
vez lo interdisciplinario) y el autor asocia estas cuestiones 
con lo que sucede en el plano de la discusión epistemológica 
de la propia disciplina.

El otro punto que es clave para lo que queremos plantear 
está puesto en primer plano en el libro de Torres Curthi9 
y es sumamente inquietante: el problema de la verdad de 
los modelos. Allí la autora nos llama la atención sobre la 
diferente cualidad de las verdades de las ciencias fácticas, 
que dependen de hechos pero son necesariamente 
provisorias y tienen detrás un proceso inductivo, con 
hipótesis que se ponen a prueba y admiten ser refutadas; 
y las verdades de las ciencias formales que son absolutas 
(ya sean axiomas o teoremas); es decir, ya sea porque se 
aceptan como verdades para el sistema formal del que 
forman parte o porque han sido demostradas a partir de 
aquellas, las verdades de los sistemas axiomáticos lo son 
para siempre y no admiten refutación. ¿Podemos entonces 
representar adecuadamente sistemas y problemas de las 
ciencias naturales (que son fácticas) mediante los objetos 
y leyes de las ciencias formales (como las matemáticas) y 
lograr una buena representación? Algunos aspectos de ese 
problema y sus posibles respuestas han sido explorados 
por el distinguido colega y amigo Fernando Córdova-Lepe 
en esta misma sección en el número anterior. Allí, nuestro 
colega hace énfasis en la problemática que implica el trabajo 
interdisciplinario que le es propio al modelador matemático 
que aplica sus conocimientos a los sistemas biológicos.

INTENTANDO DESENREDAR EL HILO

Habiendo hecho este repaso obligadamente breve, podemos 
ver que el lugar del modelado matemático en las ciencias 
biológicas es múltiple y que los temas de meditación que 
acompañan la tarea son muchos.

¿Actúa la matemática como una herramienta cuando 
modelamos sistemas biológicos? Podríamos decir que 
sí, pero que no siempre es el mismo tipo de herramienta; 
depende del objetivo que tengamos. Está claro que esta 
herramienta no se agota en la búsqueda de predicciones 
solamente; que las predicciones no son solamente 
tendencias o valores que se podrían ajustar mejor o peor a los 
datos empíricos; que el desarrollo de modelos mecanísticos 
de los procesos biológicos no sólo implica la comprensión 
profunda de los procesos, sino que también ayuda a esa 
comprensión, ilumina aspectos, sugiere simplificaciones y 
generalizaciones que no se tenían en cuenta.
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Pero hay más aún, y esto no sólo es válido para las ciencias 
biológicas sino que puede pensarse de manera análoga para 
otras ciencias: de alguna manera, la habilidad de modelar 
matemáticamente lo biológico nos abre una puerta hacia 
otros mundos biológicos posibles. De alguna manera, el 
modelado matemático no necesita ser ulterior al fenómeno 
biológico observable; podría plantearse preguntas acerca 
de fenómenos aún no observados; por ejemplo, ¿porqué 
no existen organismos que obtengan energía biológica 
rodando cuesta abajo y transformando la energía cinética 
en química? Y si existiesen, ¿cómo podrían funcionar 
biológicamente; qué mecanismos deberían tener, cómo se 
reproducirían, qué organelas tendrían sus células, cómo 
los afectaría la selección natural? El modelado también 
nos permite imaginar organismos y ecologías que podrían 
existir en ambientes de otros planetas (Carl Sagan fue 
pionero en esta clase de hipótesis). 

Por otra parte, es bastante habitual que los problemas 
biológicos más conocidos, al intentar ser modelados 
planteen también problemas matemáticos particulares que 
a veces nos llevan al desarrollo de técnicas o al rescate de 
áreas de las matemáticas un tanto olvidadas. Un ejemplo 
posible de temas que están requiriendo del desarrollo de 
técnicas matemáticas nuevas o, incluso, del desarrollo 
de nuevos conceptos, es el amplio desarrollo que está 
experimentando el estudio de redes biológicas, desde redes 
de interacciones entre especies (redes tróficas, redes de 
competencia, redes mutualistas) hasta redes metabólicas, 
de regulación genética, de relaciones sociales entre 
animales, etc. Uno de los temas difíciles de resolver en el 
estudio de estas estructuras dinámicas es determinar su 
estabilidad ante perturbaciones externas; otro es el terreno 
de la predicción de la dinámica de esas redes. Actualmente 
las herramientas matemáticas con que contamos han 
demostrado ser insuficientes o poco sutiles para captar 
estas dinámicas complejas. Las métricas de estabilidad se 
multiplican y se apoyan en una multiplicidad de hipótesis 
auxiliares no siempre plausibles, o bien se obtienen 
de simulaciones reduccionistas (que subestiman las 
interacciones no lineales). Seguramente hay propiedades de 
las matrices que pueden asociarse con variables análogas a 
la energía libre10 y que valdría la pena explorar en equipos 
multidisciplinarios.

En síntesis: nuestra área de trabajo, que tiene en esta revista 
un vehículo académico, es cada vez más amplia, desafiante 
y provocativa. Y un territorio fértil para otra de las 
capacidades humanas que está en la base de toda ciencia: 
la imaginación.
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MATHEMATICAL MODELS, WHAT FOR?

Dr. Fernando Momo
Universidad de General Sarmiento, 

Provincia de Buenos Aires, Argentina

Making mathematical models of biological processes is an 
old scientific activity with a long tradition. In fact, mathe-
matical modeling is a common activity in all sciences, from 
the “canonical” natural sciences, such as Physics, to the 
social sciences and humanities. Moreover, we could think 
that model biological systems can already be considered as 
a discipline itself, and even an independent science (it has 
objects of study, methodologies, and a minimal well-defi-
ned vocabulary).

But of course, in all scientific activity, it is healthy to beco-
me aware and think systematically (and regularly) about 
the meaning of our task, its why and what for. In this case, 
we intend to explore some methodological and epistemo-
logical issues that seem to still be in discussion or, at least, 
present diverse interpretations.

Let’s see, this is an editorial text that is published in a Jour-
nal of Mathematical Modeling of Biological Systems. So, 
does it make sense to ask about the objectives of modeling? 
what do we want to achieve when we model mathematica-
lly? Why are we particularly interested in modeling these 
systems and what new, special or important can models 
contribute in this field?

If we take a brief tour of some fundamental bibliography on 
the subject, we will see that the interpretations and answers 
are not uniform and have subtly varied approaches.

For example, Teresa González Manteiga, in her excellent 
book, places mathematics in a privileged place as a central 
science. Supported by abundant citations, which include 
physicists like Galileo or Newton, philosophers like Kant or 
Manero, and even poets like Paul Valéry, this author places 
mathematical modeling in the place of discovery and abs-
traction of the ultimate principles of nature. As we can see, 
it is a position that goes far beyond the usual instrumental 
idea of modeling. At the other extreme, we have definitions 
that point to mathematics as a tool. Hastings, in his book on 
population dynamics, says succinctly that the goal of popu-
lation biology is to understand and predict population dy-
namics and that understanding, explaining, and predicting 
these dynamics requires mathematical models. As we can 
see, what is underlined here is an auxiliary role in which 
the emphasis is placed on the biological problem itself and 
mathematics takes a subsidiary but useful role because it 
allows a formalism that facilitates understanding and also 
quantitative prediction. This approach has been dominant 
especially in mathematical modeling within population 
ecology, forgetting in fact that many of the “purely” ecolo-
gical concepts that are taught as laws have their origin in 
model analysis, for example, the principle of competitive 
exclusion in Gause’s formulation.

Some other authors are located in an intermediate zone; For 
example, Gillman and Hails argue that an ecological model 
must be able to describe the changes in the variables of in-
terest (for example, population density) with some degree 
of accuracy, and also that such models must be expressed 
mathematically due to the brevity and formality of the des-
cription, the possibility of manipulation of the model, and 
the possibility of discovering emergent properties that are 
not apparent to non-mathematical reasoning. As we can 
see, a fundamental novelty appears here that has to do with 
the illuminating nature of mathematical models as they 
are capable of showing what is not seen. This idea under-
lies other texts, such as the wonderful book by Hernández 
and Velasco Hernández in which the authors warn us of the 
dangers of limiting the use of mathematical models to mere 
prediction and advocate, on the contrary, for more ambi-
tious management where the use of models can even test 
hypotheses or deepen our understanding of very complex 
systems. In fact, they present a very nice analogy according 
to which mathematical models can also be considered an 
observation instrument: to observe the very distant we can 
use a telescope; to observe the very small, a microscope; to 
observe the very complex, mathematical models. It is a pro-
vocative and stimulating idea.

Editorial
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In his classic work on models in ecology, Pielou classifies 
them according to their use. The verbs and expressions 
used to designate the functions of the models are explain, 
predict, generate testable hypotheses, serve as ideal patter-
ns against which to contrast real processes. We have here 
some additional functions to those that we have been com-
menting on. Can we ask the models for more things? Well, 
it seems so, because when we open the spectrum beyond 
the ecological and we take them to all the phenomena that 
biology studies, we  find other topics that must be taken 
into account  to better define the scope of mathematical 
modeling. For example, in the book by Esteva and Falconi 
it is stated that “Mathematical modeling offers a research 
tool that allows the biologist to study the essence of a phe-
nomenon and leave aside details that are not relevant to its 
understanding”, a vision that is closely related to the meta-
phor that we already mentioned of the observation instru-
ment and with the spirit shown in Manteiga’s book advoca-
ting mathematics as the privileged path for abstraction and 
the elaboration of general principles from particular cases. 
Another very delicate and relevant point that Esteva and 
Falconi’s book raises in its introduction is the deeply inter-
disciplinary nature of mathematical biology which stresses 
that “...without a deep knowledge of biology it is impossible 
to establish a mathematical model and know if it is interes-
ting or irrelevant...”.

This brings us to the last two topics that I would like to 
raise before attempting a synthesis of the matter. First, 
the problem of the particular nature of biological systems 
and how this nature influences what we can or cannot do 
from mathematical models; this is brilliantly developed in 
an article by Germinal Cocho Gil, published as a chapter of 
a book coordinated by Sánchez Garduño, Miramontes and 
Gutiérrez Sánchez. There, the author presents us with two 
exercises in diatopical hermeneutics posing the opposi-
tions between two schools of evolutionary biology and also 
the classic Evo-Devo contradiction. Far from exhausting 
himself in a simple historical description, Cocho shows us 
issues that are anchored in some essential characteristics 
of the biological world, in particular the fact that biological 
systems are historical, dynamic and mutable, and therefo-
re, difficult to classify with static definitions; on the other, 
the existence of a hierarchy of levels of complexity (which 
also implies a hierarchy of controls and feedback) in any 
functioning biological structure. Here the thermodynamic 
question (once again the interdisciplinary) comes to play an 
important role and the author associates these questions 
with what happens at the level of the epistemological dis-
cussion of the discipline itself.

The other point that is key to what we want to raise is brou-
ght to the fore in Torres Curth’s book and is extremely dis-
turbing: the problem of the “truth” of the models. There the 

author draws our attention to the different qualities of the 
“truths” of the factual sciences, which depend on facts but 
are necessarily provisional and have an inductive process 
behind them, with hypotheses that are put to the test and 
admit to being refuted; and the truths of the formal scien-
ces that are absolute (either axioms or theorems); that is to 
say, either because they are accepted as truths for the for-
mal system of which they are part, or because they have 
been demonstrated from those, the “truths” of the axio-
matic systems are forever and do not admit refutation. Can 
we then adequately represent systems and problems of the 
natural sciences (which are factual) by means of the objects 
and laws of the formal sciences (such as mathematics) and 
achieve a good representation? Some aspects of this pro-
blem and its possible answers have been explored by the 
distinguished colleague and friend Fernando Córdova-Le-
pe in this same section in the previous issue. There, our co-
lleague emphasizes the problems involved in the interdis-
ciplinary work that is proper to the mathematical modeler 
who applies his knowledge to biological systems.

TRYING TO UNTANGLE THE THREAD

Having made this necessarily brief review, we can see that 
the place of mathematical modeling in the biological scien-
ces is manifold and that the themes for meditation that ac-
company the task are many.
Does mathematics act as a tool when we model biological 
systems? We could say yes, but it is not always the same 
type of tool; It depends on the goal we have. It is clear that 
this tool does not end with the search for predictions only; 
that the predictions are not only trends or values that could 
fit better or worse to the empirical data; that the develo-
pment of mechanistic models of biological processes not 
only implies a deep understanding of the processes; but 
also helps that understanding, illuminates aspects, su-
ggests simplifications and generalizations that were not 
taken into account.

But there is even more, and this is not only valid for the bio-
logical sciences but can be thought of in a similar way for 
other sciences: in a way, the ability to model the biological 
mathematically opens a door to other possible biological 
worlds. Somehow, mathematical modeling need not be ul-
terior to observable biological phenomena; could ask ques-
tions about phenomena not yet observed; For example, 
why aren’t there organisms that obtain biological energy by 
rolling downhill and transforming kinetic energy into che-
mical energy? And if they did exist, how could they func-
tion biologically; What mechanisms should they have, how 
would they reproduce, what organelles would their cells 
have, and how would natural selection affect them? Mode-
ling also allows us to imagine organisms and ecologies that 
could exist in environments on other planets (Carl Sagan 
pioneered this kind of hypothesis).
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On the other hand, it is quite common that the best-known 
biological problems, when trying to be modeled, also pose 
particular mathematical problems that sometimes lead us 
to the development of techniques or to the rescue of so-
mewhat forgotten areas of mathematics. A possible exam-
ple of topics that are requiring the development of new 
mathematical techniques or, even, the development of new 
concepts, is the broad development that the study of bio-
logical networks is undergoing, from interaction networ-
ks between species (trophic webs, competition networks 
, mutualistic networks) to metabolic networks, genetic 
regulation, social relations between animals, etc. One of 
the difficult issues to resolve in the study of these dynamic 
structures is to determine their stability in the face of ex-
ternal disturbances; another is the field of predicting the 
dynamics of these networks. Currently, the mathematical 
tools we have have proven to be insufficient or not very 
subtle to capture these complex dynamics. Stability me-
trics are multiplied and are supported by a multiplicity of 
auxiliary hypotheses that are not always plausible, or are 
obtained from reductionist simulations (which underesti-
mate non-linear interactions). Surely there are properties 
of matrices that can be associated with variables analogous 
to free energyi and that would be worth exploring in multi-
disciplinary teams.

In summary: our area of work, which has an academic gui-
deline in this journal, is increasingly broad, challenging 
and provocative. And a fertile territory for another of the 
human capacities that is at the base of all science: imagi-
nation.

.
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ABSTRACT

In this paper, we define an intraguild predation model of one-resource and two-predator, in which the mesopredator catched
by a top predator, feeds on a resource that grows according to a logistic growth law; for both the meso and the top predator,
Holling type II functional responses are considered. Predators and prey diffuse into a connected bounded region in R2. Two
scenarios are considered: 1. As a defense mechanism, the resource attracts the top predator that feeds on the mesopredator;
2. The top predator in search of food moves towards areas where the mesopredator population is increasing. Some general
properties of the solutions of the model are proved. In addition, the results of the numerical simulations carried out to analyze
the effect on the spatial distribution of the populations of the indirect defense mechanism of the first scenario are shown. This
is contrasted with the results of the model simulations corresponding to the second scenario, in which the diffusion of the top
predator is regulated by a tendency to move towards the mesopredator gradient.

Keywords:

Competing species; Intraguild predation; Chemotaxis, Active-search hunting

RESUMEN

En este trabajo se define un modelo de depredación intragremial de un recurso y dos depredadores, en el cual el recurso crece
de acuerdo a una ley de crecimiento logístico y es el alimento de un mesodepredador que es capturado por el depredador
principal; para ambas clases de depredadores se considera una respuesta funcional Holling tipo II. Depredadores y presas se
difunden en una región conexa y acotada de R2. Se estudian dos escenarios: 1) El recurso atrae, como un mecanismo de
defensa, al depredador principal que se alimenta del mesodepredador; 2) En la búsqueda de alimento, el depredador principal
se mueve hacia las áreas donde es creciente la población del mesodepredador. Se demuestran algunas propiedades generales
de las soluciones del modelo. Además, se realizan simulaciones numéricas para analizar los efectos sobre la distribución
espacial de las poblaciones, del mecanismo de defensa indirecta del primer escenario. Esto es confrontado con los resultados
de la simulaciones del modelo correspondiente al segundo escenario, en el que la difusión del depredador principal está
regulada por su tendencia a moverse hacia el gradiente del mesodepredador.
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Competencia de especies; Depredación intragremial; Quimiotaxis; Cazador de búsqueda activa
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1 INTRODUCTION

I ndividual movement regulated by concentrations of
chemical substances is a very frequent natural phe-

nomenon; known as Chemotaxis is an important mechanism,
for instance, of bacterial populations in search of nutrients
or to establish symbiotic relationships (see (Raina et al.,
2019)). Chemical components has been observed as a de-
fense strategy of several species. In (Pereira et al., 2000),
the authors review some recent studies focused on charac-
terizing the so-called plant volatiles induced by herbivores
and the olfactory mechanisms present in some tritrophic in-
teractions. The way in which organisms respond to chemo-
taxis has been discussed in (Iino and Yoshida, 2009). In par-
ticular, it describes the movements that C. elegans makes
when the NaCl concentration decreases. In this paper it is
mentioned that C. elegans rapidly changes the direction of
locomotion through the use of a set of stereotyped behav-
iors, in response to a decrease in the concentration of the
chemical substance. To get some insight of the impact of
chemotactic processes on the population dynamics of some
species, (Pereira et al., 2000) studied the chemical defense
of two species of brown alga Dictyota menstrualis and Dic-
tyota mertensii used against herbivores with limited mobility,
the amphipod Parhyale hawaiensis and the crab Pachygrap-
sus transversus. In fact, natural defense against predation is
very well documented and it is present in both invertebrate
and vertebrate species, see (Dumbacher and Pruett-Jones,
1996), (Eisner et al., 2000), (Fattorini et al., 2010), (Matz
et al., 2008), (Buonomo et al., 2019). On the other hand,
the study about the relationship of organism dispersal and
community structure of interacting species has a long his-
tory. Since the works of Kolmogorov (Kolmogorov, 1937)
and Skellam (Skellam, 1951), mathematical modeling of dif-
fusion and random walk has been widely applied in the study
of the effect of individual movement on the dynamic prop-
erties of different kinds of species interaction. Among the
recent works on this topic it is (Yang and Fu, 2008) where
the authors consider a tritrophic food chain with predators
and one resource; the existence and boundedness of solu-
tions and stability of equilibrium solutions are analyzed. Sta-
bility and Turing patterns of a diffusive predator-prey model
have been analyzed in (Song et al., 2020). Diffusion and de-
lay effect has been incorporated in an intraguild predation
model in (Han and Dai, 2017), where the authors studied
how the delay on the conversion rate of mesopredator in-
duces spatiotemporal patterns. About diffusion in predator-
prey context see (Venturino and Petrovskii, 2013) and (Ai
et al., 2017). In this work we analyzed how the emission of
chemical substances which attract predators of consumers of
a resource impacts the spatial distribution of species. A lab-
oratory study on this topic is (Kessler and Baldwin, 2001)
where Kessler and Baldwin have found that volatile emis-
sions from Nicotiana attenuata could reduce the number of
herbivores up to 90%.

In this work, we consider an intraguild predation model of
one resource and two predators; the importance of this in-

teraction for population ecology has been explained by Polis
and Holt in (Polis and Holt, 1992). We consider that meso-
predator feed on a resource which grows acoording to a lo-
gistic growth law and it is consumed by a top predator; func-
tional responses of meso and top predators are of Holling
type II. Predators and prey difusse in a connected bounded
region Ω⊂ R2 of the plane whose boundary ∂Ω is a regular
curve. We consider two cases: in the first case, the model is

∂u
∂ t

= d0∆u+αu
(

1− u
K

)
− buv

u+a
,

∂v
∂ t

= d1∆v+ γ
buv

u+a
− cvw

v+d
−µv, (1)

∂w
∂ t

= d2∆w+β
cvw
v+d

−ρw−∇ · (χ1 (v,w)∇v) ,

the random dispersal of top predators is tempered by a
certain tendency to move up the gradient of mesopreda-
tors. Pheronomes have been reported (see (Yoshimizu et al.,
2018)) to affect foraging behavior in such a way that the in-
dividual chemotactic response is modulated by interactions
with other organisms in the population. For this reason, the
chemotactic sensitivity χ1 (v,w) depends on w.

In the second case, as a chemotactic defense mechanism
of the prey is considered, the resource population attracts top
predators which feeds on mesopredator; this kind of indirect
defense against predators has been reported in (Aljbory and
Chen, 2018), see also (Buonomo et al., 2019); 2) top predator
in search of food moves towards areas where the mesopreda-
tor population is increasing The model is given by

∂u
∂ t

= d0∆u+αu(1− u
K
)− buv

u+a
,

∂v
∂ t

= d1∆v+ γ
buv

u+a
− cvw

v+d
−µv, (2)

∂w
∂ t

= d2∆w+β
cvw
v+d

−ρw−∇ · (χ2(u,w)∇u),

in this model the random movement is regulated by the gradi-
ent of population density of the resource. In the above mod-
els, the carrying capacity K = K(x,y) is a non-negative func-
tion defined in Ω and describes the diverse suitability of the
niche of the resource. Niche suitability and size population
has been addressed in (Osorio-Olvera and Falconi, 2019). It
is assumed that the flux vanishes in the boundary of Ω,

∂u
∂η

(x, t) =
∂v
∂η

(x, t) =
∂w
∂η

(x, t) = 0,x ∈ ∂Ω, t > 0 (3)

where ∂/∂η = η ·∇, and η is the normal vector to ∂Ω.
The intrinsic growth of the resource u is denoted by α; b
and c are the mortality rate by predation on u and v, respec-
tively. The conversion rate of biomass captured by v and w
are γ and β , respectively. The parameters µ and ρ stand for
the mortality rate of meso and top predators, respectively.
The half saturation constant a estimates the handling time of
prey by predators. In Model (1) it is assumed that the regu-
lating mechanism against of random dispersal of w depends
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on a volatile substance generated by v; in Model (2), it is
generated by u. Two predators which feed on a common re-
source subject to a Lotka-Volterra interaction was considered
in (Wang et al., 2017), where it was assumed that diffusive
movement of predators is controlled by the prey density gra-
dient. In (Tello and Wrzosek, 2016) was analyzed a predator-
prey model where predator moves toward the gradient of a
chemical released by prey.
The underlying ordinary differential system corresponding to
Models (1) and (2) is given by

u′ = αu
(

1− u
K

)
− buv

u+a
,

v′ = γ
buv

u+a
− cvw

v+d
−µv, (4)

w′ = β
cvw
v+d

−ρw.

The system (4) has the following equilibrium points

i) P1 = (0,0,0)

ii) P2 = (K,0,0)

iii) P3 =
(

aµ

bγ−µ
, aαγ(bγK−µ(a+K))

K(bγ−µ)2 ,0
)
.

Under appropriate conditions, this system posses one equi-
librium point P4 = (u1,v1,w1) with positive coordinates
given by

u1 = 1
2

(
−a+K +

√
cαβ (a+K)2−(4bdK+(a+K)2

α)ρ

(cβ−ρ)α

)

v1 =
dρ

cβ −ρ

w1 =
(d + v1)(bγu1− (a+u1)v1µ)

c(a+u1)

Point P1 is always unstable; P2 is locally asymptotically
stable if bKγ − aµ −Kµ < 0 and unstable if bKγ − aµ −
Kµ > 0; P3 is stable if bKγ − aµ − Kµ > 0 and bγa >
bKγ − aµ − Kµ and unstable if bKγ − aµ − Kµ > 0 and
bγa < bKγ−aµ−Kµ .

2 EXISTENCE OF POSITIVE SOLUTION

In this section we provide conditions for the existence of pos-
itive solutions of systems (1) and (2) for the initial conditions

t = 0: u = u0 (x) , v = v0 (x) , w = w0 (x) , x ∈Ω (5)

and the boundary conditions given by (3). Let p > n ≥ 1;
then W 1,p (Ω,Rn) is continuously embedded in the continu-
ous function space C (Ω;Rn). Let

X := {y ∈W 1,p (
Ω,R3) |η ·∇y|∂Ω

= 0}.

It is assumed that there exist 0 < εm, εM , such that

εm < K(x,y)< εM, for all(x,y) ∈Ω (6)

Theorem 1 If (u0,v0,w0) ∈ X, then

(i) There exists T = Tmax ∈ [0,∞), which depends on
the initial conditions (5) such that the problem
(1),(3)and (5) has a unique maximal solution (u, v, w)
on Ω × [0,Tmax) and (u(·, t) , v(·, t) , w(·, t)) ∈
C ((0, Tmax) ,Ω), (u,v,w) ∈C2,1

(
(0,Tmax)×Ω,R3

)
;

(ii) If u0, v0, w0 ≥ 0 on Ω, then u, v, w≥ 0 on Ω× [0,Tmax);

(iii) If ‖(u,w,w)(·, t)‖L∞(Ω) is bounded for all t ∈ [0,Tmax),
then Tmax =+∞; equivalently, (u,v,w) is a global solu-
tion.

Proof Let z = (u,v,w) ∈ R3. Then, (1),( 3) and (5) can be
written as

zt = ∇ · (A(z)∇z)+F (z) on Ω× [0,∞)

Bz =
∂

∂η
z = 0 on ∂Ω× [0,∞) (7)

z(·,0) = (u0,v0,w0) en Ω,

where

A [z] =

 d0 0 0
0 d1 0
0 −χ1 d2


and

F (z) =

 u
(
α
(
1− u

K

)
− bv

u+a

)
v
(
γ

bu
u+a −

cw
v+d −µ

)
w
(
β

cv
v+d −ρ

)


Matrix A [z] is triangular, then the eigenvalues are the diag-
onal entries d0, d1 and d2, which are assumed to be positive,
then the systen (7) is normally elliptic, see pages 15-16 of
(Amann, 1990). The result follows from (Haskell and Bell,
2020). �

According to the above theorem, to prove the existence of
global solutions it is necessary to show that u, v and w are
uniformly bounded in L∞ (Ω).

Theorem 2 If (u0,v0,w0) ∈ X, then the solutions of the Sys-
tem (1), with boundary conditions (3) and initial conditions
(5) are bounded.
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Proof Let W (x, t) = u+ 1
γ
v+ 1

γβ
w, so

d
dt

∫
Ω

(W (x, t)) =
∫

Ω

(
d0∆u+αu

(
1− u

K

)
− buv

u+a

)
dx

+
∫

Ω

(
1
γ
(d1∆v)

)
dx

+
∫

Ω

(
1
γ

(
γ

buv
u+a

− cvw
v+d

−µv
))

dx

+
∫

Ω

(
1

γβ

(
d2∆w+β

cvw
v+d

−ρw
))

dx

−
∫

Ω

(
1

γβ
(∇ · (χ1 (v,w)∇v))

)
dx

=
∫

Ω

(
d0∆u+

1
γ

d1∆v+
1

γβ
d2∆w

)
dx

+
∫

Ω

(
αu
(

1− u
K

))
dx

+
∫

Ω

(
− buv

u+a
+

buv
u+a

− c
γ

vw
v+d

)
dx

+
∫

Ω

(
−µ

γ
v+

c
γ

cvw
v+d

− ρ

γβ
w
)

dx

≤
∫

Ω

(
αu
(

1− u
K

)
− µ

γ
v− ρ

γβ

)
dx

It follows that

d
dt

∫
Ω

Wdx+
∫

Ω

(
µ

γ
v+

ρ

γβ
w
)

dx≤∫
Ω

αu
(

1− u
K

)
dx. (8)

On the other hand, let µ0 = min{µ,ρ} that implies

d
dt

∫
Ω

Wdx+µ0

∫
Ω

(
1
γ

v+
1

γβ
w
)

dx≤

d
dt

∫
Ω

Wdx+
∫

Ω

(
µ

γ
v+

ρ

γβ
w
)

dx. (9)

From (8) and (9), we obtain that

d
dt

∫
Ω

Wdx+µ0

∫
Ω

(
u+

1
γ

v+
1

γβ
w
)

dx≤∫
Ω

(
αu
(

1− u
K

))
dx+

∫
Ω

µ0udx (10)

Note that ∫
Ω

(
(α +µ0)u− αu2

K

)
dx ≤

∫
Ω

1
4

K (α +µ0)
2

α
dx ≤ (11)

1
4

εM (α +µ0)
2

α
|Ω|

Now, let K0 = 1
4

εM(α+µ0)
2

α
|Ω|, then from (10) and (12) we

have that

d
dt

∫
Ω

Wdx+µ0

∫
Ω

(
u+

1
γ

v+
1

γβ
w
)

dx≤ K0

from this, is clearly evident that∫
Ω

(
u+

1
γ

v+
1

γβ
w
)

dx≤ K0 + ce−t

It follows that solutions are bounded, since according to The-
orem 1.(ii), u,v,w are nonegative. �

The proof of the following theorem is similar to those of
Theorem 1.

Theorem 3 Let (u0,v0,w0) ∈ X.

• There exists T = Tmax ∈ [0,∞), which depends on the
initial conditions (5) such that the problem (2),(3)
and (5) has a unique maximal solution (u, v, w)
on Ω × [0,Tmax) and (u(·, t) , v(·, t) , w(·, t)) ∈
C ((0, Tmax) ,Ω), (u,v,w) ∈C2,1

(
(0,Tmax)×Ω,R3

)
;

• If u0, v0, w0 ≥ 0 on Ω, then u, v, w≥ 0 on Ω× [0,Tmax);

• If ‖(u,w,w)(·, t)‖L∞(Ω) is bounded for all t ∈ [0,Tmax),
then Tmax =+∞; i.e., (u,v,w) is a globally bounded so-
lution.

Note that v and w vanish if γb ≤ µ and βc ≤ ρ , respec-
tively. From now on, we assume that γb > µ and βc > ρ .

Let Y =
{

U = (u,v,w) ∈
[
C1
(
Ω
)]3 |∂ρ u(x) = 0, x ∈ ∂Ω

}
,

and µi be the eigenvalues of the operator −∆ on Ω with the
homogeneous Neumann boundary condition. We denote by
E (µi), the eigenspace corresponding to µi in C1

(
Ω
)
. let{

φi, j, j = 1,2, ...,dim(E (µi))
}

be a orthonormal basis of E (µi) and Yi j =
{

C ·φi j|C ∈ R3
}

.
Then,

Yi =⊕dim(E(µi))
j=1 Yi j,Y =⊕∞

i=1Yi.

Theorem 4 Let 0 < K ∈ R. If bKγ−aµ−Kµ < 0 then the
equilibrium point P2 of system (1) is asymptotically stable.

Proof Let A [z] =

 d0 0 0
0 d1 0
0 −χ1 d2

 as in theorem 1 and

L = A [z]∆+J1 where J1 is the Jacobian matrix of the system
without diffusion evaluated at P2; i.e.

J1 =

 −α − bK
a+K 0

0 bKγ

a+K −µ 0
0 0 −ρ

 .

The linearization of the system at P2 is Ut = LU . Yi is invari-
ant with respect to operator L for all i≥ 1; λ is an eigenvalue
of L restricted to Yi if and only if is an eigenvalue of matrix
−µiA [z]∆+ J1.

The characteristic polynomial of µiA [z]∆+ J1 is

ϕi (λ ) = (λ +µid1 +α)

(
λ +µid2−

bKγ

a+K
+µ

)
(λ +µid2 +ρ)
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whose roots are−µid1−α ,−µid2+
bKγ

a+K −µ and−µid2−
ρ . Therefore, the point-spectrum of L consists of eigenvalues
that satisfy {Reλ ≤ −(1/2)max{α, − bKγ

a+K + µ,ρ}} when-
ever bKγ − aµ −Kµ < 0; from which stability around P2
follows, [(Henry, 2006),Th. 5.1.1 ]. �
The spatial discretization that we apply to perform some nu-
merical simulations of the previous models are describes in
the Appendix. In the following computations we apply the
finite element method with a time step ∆t = 0.001 and the
mesh is conformed by 17385 vertices, 34288 triangles and
hmin = 0.0117835.hmax = 0.028418.

3 NUMERICAL SIMULATIONS

In this section, some numerical simulations are carried out
in order to obtain some knowledge about the effect on the
population density of the indirect defense mechanism of the
resource against the meso–predator, which consists on the
attraction of the main predator towards the resource. This
will be contrasted with the results of the corresponding sim-
ulations of Model (1), in which the random diffusion of the
main predator is regulated by a tendency to move towards the
gradient of the meso-predator; this is the case of predators
actively searching for prey, see (Ioannou and Krause, 2008),
(Ross and Winterhalder, 2015) and the references cited there.

MODEL 1: ACTIVE-SEARCH HUNTING.

In the following we consider Model (1) where the top preda-
tor is an active-search hunter. We take

χ1(v,w) = e1w− e2v.

Therefore the top predator move towards the gradient of
mesopredator only if its population density is large enough
compared to that of the mesopredator. The ratio e2

e1
measures

the defensive capacity of the mesopredator in terms of its
population size; the larger this ratio, the greater the density
of the predator required to advance towards the prey. The
parameter values are given by α = 5, a = 2.0, b = 5.0, c =
0.1, d = 2.0, β = 1.0, γ = 1.0, µ = 0.05, ρ = 0.05, d0 = 0.1,
d1 = 1,d2 = 1.
For this parameter values, the equilibrium points of system
(4) are P1 = (0,0,0), P2 = (K,0,0), P3 = ( 2

99 ,
200(99K−2)

9801K ,0) .
Existence and stablity properties of these equilibrium points
are described in Table 1. Notice that there is no CEP point
for the above parameter values. For the numerical computa-
tions we assume that Ω = [−1,1]× [−1,1] and we have used
the FreeFem++ software (Hecht, 2012). Initial conditions for
the spatial distribution of the resource, the meso-predator and
top predator are considered as

u0(x,y) = 2exp(−10(x2 +(y− .9)2))(1− x2)2(1− y2)2;
v0(x,y) = 2exp(−(x+ .9)2− (y+ .9)2)(1− x2)2(1− y2)2;
w0(x,y) = 1.5

for all x,y ∈ Ω. In contrast with the meso predator and the
resource, the top predator is initially uniformly distributed,
(see Figure 1).

Table 1

Point Existence Interval Stable Unstable
P1 K > 0 K > 0

P2 K > 0 K < 2
99 K > 2

99

P3 K > 2
99

2
99 < K < 202

99 K > 202
99

P4 K > 200
99 K > 200

99

Defensive capacity and species distribution

We consider five different defensive capacities of the prey.
The suitability of the habitat of the resource is given by

K(x,y) = 2exp(−5((x+ .75)2 +(y− .75)2))

+2exp(−5((x− .75)2 +(y+ .75)2))

+2exp(−5((x+ .75)2 +(y+ .75)2))

+2exp(−5((x− .75)2 +(y− .75)2)).

Notice that the range of K in Ω is contained in the interval
( 2

99 ,
200
99 ). Therefore, according to Table 1 system 4 without

diffusion does not have the coexistence point P4 and also the
point P3 is asymptotically stable. Thus, without diffusion the
top predator w would become extinct.

First, let e1 = 1.0, e2 = 1.0. In this case, the defensive
capacity of the prey is neutral. Top predator move towards
mesopredator whenever its density be greater than the one of
the mesopredator

Second, let e1 = 1.0,e2 = 0.5 In this case, the mesopreda-
tor defense against of top predator is lesser than the above
case. Thus, we observe that predators are closer to the meso-
predators than in the first case (see Figures 2 and 6).

Third, let e1 = 1.0, e2 = 2.0. Prey presents a strong de-
fense capacity. Notice that predators tends to move towards
the lower density areas of the prey population, (see Figures 2
and 3).

Fourth case, let e1 = 1.0, e2 = 10.0. Prey presents still a
defense capacity stronger than the previous case.

Fifth case, Let e1 = 10.0, e2 = 1.0 This is the smallest de-
fensive capacity considered in this section.

From the comparison of Figures 6-5, we conclude that de-
fensive capacity has a negligible effect on the prey popula-
tion, if the predation rate is not large enough. Indeed, the
main impact is over the spatial distribution of both the meso
predator and the top predator.

Habitat suitability and species distribution

To understand how the ecological landscape impact species
distribution, we consider two different characterization of the
carrying capacity. In either case, the values of parameters of
χ1 are e1 = 1.0, e2 = 10.0, and the initial condition of u is

u0(x,y) = 2exp(−10(x2 + y2))(1− x2)2(1− y2)2
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(a1) u, t = 0 (b1) v, t = 0 (c1) w, t = 0

Figure 1: Contour plots of time evolution of the resource u, mesopredador v and top predador w at different times.

The initial conditions v0(x,y) and w0(x,y) are the same as
above.
First, we consider a carrying capacity given by

K(x,y) = 2exp(−5((x+ .75)2 +(y− .75)2))

+2exp(−5((x− .75)2 +(y+ .75)2))

+2exp(−5((x+ .75)2 +(y+ .75)2))

+2exp(−5((x− .75)2 +(y− .75)2)).

The highest suitability is reached at four symmetrical points
respect to the origin.

In Figure 7 are shown plots of the numerical solutions of
u, v and w at different times. Note that as time passes, the
resource tends to occupy the most suitable sites. The meso-
predator moves towards the sites with the higher resource
density and its defensive capacity (e2/e1) is large enough to
keep the top predator away.

In this second case, the habitat of the resource is richer
since its suitability is given by

K(x,y) = 2exp(−5((x+ .75)2 +(y− .75)2))

+2exp(−5((x− .75)2 +(y+ .75)2))

+2exp(−5((x+ .75)2 +(y+ .75)2))

+2exp(−5((x− .75)2 +(y− .75)2))

+2exp(−5(x2 + y2))

The highest suitability is reached at four symmetrical points
respect to the origin and at the origin. The spatial distribution
of the three species is shown in Figure 8.
As in the first case, the mesopredators move towards the sites
of higher density of the resource and the top predator is lo-
cated far enough away from its prey because e2/e1 is rela-
tively high. It seems that the richness of the habitat does not
induce any change in the distribution patterns. Top predator
tends to occupy the areas less densely populated by meso-
predators, if e2/e1 is high enough.

RESOURCE DEFENSE AND SPECIES DISTRIBUTION

Some species defend themselves by attracting predators from
their natural enemies. This is very frequent for instance
in plant species, see (Price et al., 1980) and the bibliogra-
phy cited there. In (Aljbory and Chen, 2018) it has been
described 24 species of predators which are attracted by
volatiles generated by plants damaged by herbivores. In this

paper, the authors raise the question about the effectiveness
of predator species in controlling specific insect pests. In the
following we analyze numerically the impact on the meso-
predator distribution of an increasing predation rate of the
top predator when this is attracted by the resource species.
To analyze the relationship between the distribution of the
mesopredator and the predation rate of a top predator that is
attracted to the resource, we use Model (2) which is shown
below.

∂u
∂ t

= d0∆u+αu(1− u
K(x,y)

)− buv
u+a

,

∂v
∂ t

= d1∆v+ γ
buv

u+a
− cvw

v+d
−µv, (12)

∂w
∂ t

= d2∆w+β
cvw
v+d

−ρw−∇ · (χ2(u,w)∇u).

The sensitivity function is χ2(u,w) = quw. Thus, the move-
ment of top predators towards the gradient of u is faster the
higher its own density or that of the resource.
Initial conditions for the spatial distribution of the resource,
the meso-predator and top predator are considered as

u0(x,y) = 2exp(−(x2 +(y− .9)2)(1− x2)2(1− y2)2;
v0(x,y) = 2exp(−(x+ .9)2− (y+ .9)2)(1− x2)2(1− y2)2;
w0(x,y) = 1.5

for all x,y ∈ Ω. The suitability of the habitat of the resource
is given by

K(x,y) = 2exp(−5((x+ .75)2 +(y− .75)2))

+2exp(−5((x− .75)2 +(y+ .75)2))

+2exp(−5((x+ .75)2 +(y+ .75)2))

+2exp(−5((x− .75)2 +(y− .75)2)).

Let the parameter values be given by α = 5, a = 2.0, b =
5.0, d = 2.0, β = 1.0, γ = 1.0, µ = 0.05, ρ = 0.05, d0 = 0.1,
d1 = 1,d2 = 1.
The sensitivity function is χ2(u,w) = quw. The below simu-
lations are executed for different values of q and c.

It is worth to note that an increment of the predation rate
c not necessarily induces an increment on the predator pop-
ulation. In Figure 10 the predation rate is c=1.5, and the
predator population is lesser than the population showed in
Figure 9 where the predaton rate is c = 1.0. This is due, in
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part, to the weak attraction of the resource on the individual
predators, as this allows predators to remain randomly dis-
persed throughout space preventing the mesopredator popu-
lation from reaching a level high enough to support a large
population of predators. On the other hand, By comparing
Figure 10 with Figure 11 we observe that the main effect on
the increment of the attraction paremeter q is on the spatial
distribution of meso and top predators. For q = 1.0 (Fig-
ure 11), top predators tend to occupy the places most densely
populated by the resource; in contrast, mesopredators occupy
the places least densely populated by top predators. How-
ever, if the predation rate is large enough, the mesopreda-
tor population is depleted and spatial complementarity is lost
(see Figure 12). This effect vanishes if he resource’s attrac-
tion to top predators grows; in fact, for q = 10, the separation
of top and mesopredators habitats is strengthened for c = 1
and all three species reach relatively large populations levels
compared to c = .1 (see Figure (13-15). The coexistence of
the three species requires a proper balance between the rate
of predation and the attraction of predators to the resource
population. In Figure 14, we observe very low mesopredator
population levels and a sharp concentration of top predators
around the areas most populated by mesopredators.

4 CONCLUSIONS

With the aim to analyze the rol of migration and defensive
mechanisms of the prey, in this work two variations of a
tritrophic model have been considered. According to Table
(1), if the three species remain in the same location (Model 4
without diffusion), top predator would become extinct since
only the equliibrium point P3 is stable. In the first case, where
a top predator is an active-search hunter it is assumed that as
prey density increases, searching intensity decreases (Model
(1) with χ1(v,w) = e1w− e2v). Numerical simulations show
that all three species coexist and both resource and prey tend
to be concentrated around sites (x∗,y∗) ∈ Ω where resource
suitability is greatest; that is, sites (x∗,y∗) where the carry-
ing capacity K(x∗,y∗) is the maximum. The spatial distri-
bution of predator depends on the defensive capacity of the
prey; for e2/e1 low enough, predators and prey have a simi-
lar distribution (see Figures 6, 5). However, if e2/e1 reaches
a large enough level, the resource and prey populations share
the same space, but the predator occupies the locations less
populated by prey(see Figures 2, 3, 4). Hence, our numerical
simulations provide evidence that migration favors coexis-
tence and behavioral characteristics, such as a defense mech-
anism, can impact the spatial distribution of species. Further-
more, we find that the distribution of prey follows a pattern
similar to that of the resource, which tends to be distributed
near the places of greatest suitability. The spatial distribu-
tion is topic which has been analyzed from a diverse points
of interest. For instance, the cost of a defense mechanism
has been considered in (Wang et al., 2017) where the au-
thors analyze how this cost impact on pattern distribution of
predators and preys. The role of predators on the spatial dis-
tribution has been studied from a experimental point of view

in (Livingston et al., 2017), where preys do not present a de-
fense against predators. They found that was not the patch
type but the distribution of predators that most strongly pre-
dicted the composition of the prey community. The effect of
diffussion on the spatial distribution has beeen analyzed in
(Kumari, 2013) .
A second point of interest in this work is how the attraction
of enemies of my enemies influences the dynamics of a com-
munity. In some cases, the attraction activity is caused by
volatiles emitted by the resource organisms. We have ana-
lyzed this question with the Model (2) where the predator
moves toward the resource gradient according to the sensiv-
ity function χ2(u,w) = quw; that is, the higher the popula-
tion density of the resource or the predator, the greater the
tendency of the predator to move towards the resource. From
Figures 9 and 15, we observe that a high attraction favors a
greater concentration of both the top predators and the re-
source around the patches with the highest carrying capacity
of the resource; as the predation pressure decreases in the
other patches, they are occupied by the mesopredator. This
phenomenon becomes more acute if predation increases (see
Figure 14). It is also apparent that the larger q the greater the
concentration of the populations. A fact that seems counter-
intuitive is that an increase in the predation rate does not nec-
essarily lead to lower mesopredator densities; this is shown
in Figures 9 and 10, where even we observe a similar pattern
of the spatial distribution of the three species, the population
levels of the mesopredator are higher in 10 with c = 1.5 than
in 9, (c = 1.0); Possibly, this is a consequence of the fact that
the greater the predation, the lower the population of meso-
predators that arrive in the areas of greatest productivity of
the resource. The general findings shown in this paper could
be useful to the study of the biological factors that impact the
spatial distribution of species.
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(a2) u, t = 0.1 (b2) v, t = 0.1 (c2) w, t = 0.1

(a3) u, t = 0.5 (b3) v, t = 0.5 (c3) w, t = 0.5

(a4) u, t = 2.0 (b4) v, t = 2.0 (c4) w, t = 2.0

(a5) u, t = 4.0 (b5) v, t = 4.0 (c5) w, t = 4.0

(a6) u, t = 20.0 (b6) v, t = 20.0 (c6) w, t = 20.0

Figure 2: Evolution of the spatial distribution of the three species. e1 = 1.0,e2 = 1.0
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(a3) u, t = 1.5 (b3) v, t = 1.5 (c3) w, t = 1.5

(a4) u, t = 4.0 (b4) v, t = 4.0 (c4) w, t = 4.0

(a5) u, t = 20.0 (b5) v, t = 20.0 (c5) w, t = 20.0

Figure 3: Evolution of the spatial distribution of the three species. e1 = 1.0,e2 = 2.0

(a4) u, t = 2.0 (b4) v, t = 2.0 (c4) w, t = 2.0

(a5) u, t = 4.0 (b5) v, t = 4.0 (c5) w, t = 4.0

(a6) u, t = 20.0 (b6) v, t = 20.0 (c6) w, t = 20.0

Figure 4: Evolution of the spatial distribution of the three species. e1 = 1.0,e2 = 10.0
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(a4) u, t = 2.0 (b4) v, t = 2.0 (c4) w, t = 2.0

(a5) u, t = 4.0 (b5) v, t = 4.0 (c5) w, t = 4.0

(a6) u, t = 20.0 (b6) v, t = 20.0 (c6) w, t = 20.0

Figure 5: Evolution of the spatial distribution of the three species. e1 = 10.0,e2 = 1.0

(a3) u, t = 2.0 v, t = 2.0 w, t = 2.0

(a4) u, t = 4.0 v, t = 4.0 w, t = 4.0

(a5) u, t = 20.0 v, t = 20.0 w, t = 20.0

Figure 6: Evolution of the spatial distribution of the three species. e1 = 1.0,e2 = 0.5
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(a1) u, t = 0.1 (b1) v, t = 0.1 (c1) w, t = 0.1

(a2) u, t = 2.0 (b2) v, t = 2.0 (c2) w, t = 2.0

(a3) u, t = 4.0 (b3) v, t = 4.0 (c3) w, t = 4.0

(a4) u, t = 20.0 (b4) v, t = 20.0 (c4) w, t = 20.0

Figure 7: Evolution of the spatial distribution of the three species.

(a2) u, t = 2.0 (b2) v, t = 2.0 (c2) w, t = 2.0

(a3) u, t = 4.0 (b3) v, t = 4.0 (c3) w, t = 4.0

(a4) u, t = 20.0 (b4) v, t = 20.0 (c4) w, t = 20.0

Figure 8: Evolution of the spatial distribution of the three species. The suitability of resource habitat is given by (12)

.
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(a1) u, t = 2 (b1) v, t = 2 (c1) w, t = 2

(a2) u, t = 4 (b2) v, t = 4 (c2) w, t = 4

(a3) u, t = 20 (b3) v, t = 20 (c3) w, t = 20

Figure 9: Contour plots of time evolution of the resource u, mesopredador v and top predador w at different times. q = 0.1, c = 1.0

(a1) u, t = 2 (b1) v, t = 2 (c1) w, t = 2

(a2) u, t = 4 (b2) v, t = 4 (c2) w, t = 4

(a3) u, t = 20 (b3) v, t = 20 (c3) w, t = 20

Figure 10: Contour plots of time evolution of the resource u, mesopredador v and top predador w at different times. q = 0.1, c = 1.5
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(a1) u, t = 2.0 (b1) v, t = 2.0 (c1) w, t = 2.0

(a2) u, t = 4.0 (b2) v, t = 4.0 (c2) w, t = 4.0

(a3) u, t = 20.0 (b3) v, t = 20.0 (c3) w, t = 20.0

Figure 11: Contour plots of time evolution of the resource u, mesopredador v and top predador w at different times. q = 1.0, c = 1.5

(a3) u, t = 2.0 (b3) v, t = 2.0 (c3) w, t = 2.0

(a4) u, t = 4.0 (b4) v, t = 4.0 (c4) w, t = 4.0

(a5) u, t = 20.0 (b5) v, t = 20.0 (c5) w, t = 20.0

Figure 12: Contour plots of time evolution of the resource u, mesopredador v and top predador w at different times. q = 1.0, c = 2.5
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(a1) u, t = 2.0 (b1) v, t = 2.0 (c1) w, t = 2.0

(a2) u, t = 4.0 (b2) v, t = 4.0 (c2) w, t = 4.0

(a3) u, t = 20.0 (b3) v, t = 20.0 (c3) w, t = 20.0

Figure 13: Contour plots of time evolution of the resource u, mesopredador v and top predador w at different times. q = 10.0, c = .1

(a1) u, t = 2.0 (b1) v, t = 2.0 (c1) w, t = 2.0

(a2) u, t = 4.0 (b2) v, t = 4.0 (c2) w, t = 4.0

(a3) u, t = 20.0 (b3) v, t = 20.0 (c3) w, t = 20.0

Figure 14: Contour plots of time evolution of the resource u, mesopredador v and top predador w at different times. q = 10.0, c = 1.5
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(a1) u, t = 2.0 (b1) v, t = 2.0 (c1) w, t = 2.0

(a2) u, t = 4.0 (b2) v, t = 4.0 (c2) w, t = 4.0

(a3) u, t = 20.0 (b3) v, t = 20.0 (c3) w, t = 20.0

Figure 15: Contour plots of time evolution of the resource u, mesopredador v and top predador w at different times. q = 10.0, c = 1.0
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A APPENDIX

SPATIAL DISCRETIZATION

Variational formulation

We consider a general reaction-diffusion problem with Neu-
mann boundary conditions

−∆u+µu = f en Ω (13)
u(x,0) = u0(x) en Ω (14)

∂nu(x, t) = 0 en ∂Ω (15)

where function f ∈ C0(Ω) is regular, µ ∈ R. As it is usual
∂nu = ∇u ·n, where n is the exterior normal vector to ∂Ω.

A classic solution of the above problem (13)–(15) is a
function u : Ω̄ 7→ R, u ∈C2(Ω̄) which satisfies (13)–(15). In
order to facilitate the search of u we reformulate the problem
to find a equivalent solution.

Let v ∈C2(Ω̄). Multiplying (13) by v it is obtained

−v∆u+µuv = f v

Integrating on Ω

−
∫

Ω

v∆u dΩ+µ

∫
Ω

uv dΩ =
∫

Ω

f v dΩ (16)

Applying the Green Theorem∫
Ω

∇u ·∇v dΩ−
∫

∂Ω

(∇u ·n)v dS+µ

∫
Ω

uv dΩ =
∫

Ω

f v dΩ.

(17)
Since ∂nu = 0 for x ∈ ∂Ω, we have∫

Ω

∇u ·∇v dΩ+µ

∫
Ω

uv dΩ =
∫

Ω

f v dΩ. (18)

This expression is known as variational formulation of the
problem (13)–(15), see (Vidar, 2007). Notice that in (18) it is
only required that u,v ∈C1(Ω̄). Furthermore, they can even
be just continuous.

Discretization Finite Element Method

Let Hk(Ω) a Sobolev space and C1(0,T,C2(Ω̄)) is the
space of continuously differentiable functions from [0,T ] on
C2(Ω̄). Ωh is a polygonal approximation of Ω. We consider
a mesh Th of Ωh consisting of convex elements Ei ∈ Th, i ∈ I
, I ⊂ N.

Let {ϕ j(x,y)}1≤ j≤N be a base of Vh

uh(x,y, t) =
N

∑
j=1

ui(t)ϕ j(x,y)

vh(x,y, t) =
N

∑
j=1

vi(t)ϕ j(x,y)

wh(x,y, t) =
N

∑
j=1

w j(t)ϕ j(x,y)

x,y ∈ Ω, 0 ≤ t ≤ T . The basis ϕ j(x,y) are compact support
functions and we use the usual linear elements P1 defined on
triangles.

Parameter h represents the size of element Ei of mesh Th
and is defined as

h = max
Ei∈Th

diam(Ei),

as h 7→ 0, space Vh is closer to Hk(Ω).

SEMI-DISCRETIZATION OF TIME

Let
0 = t0 < t1 < · · · tN = T,

a partition of the interval [0,T ] with constant step dt = tm+1−
tm for all m ∈ {0, . . . ,N− 1}. The derivative with respect to
time is approximated using forward finite differences

ut =
um+1−um

dt
, vt =

vm+1− vm

dt
, wt =

wm+1−wm

dt

where um = u(x, tm),vm = v(x, tm),wm = w(x, tm).
By substituting the above approximation in Model (1) we

obtain that

um+1 = um +dt ·d0∆um+1 +dt ·αum+1(1− um+1

K(x,y)
)

−dt · bum+1vm+1

um+1 +a
,

vm+1 = vm +dt ·d1∆vm+1 +dt · γ bum+1vm+1

um+1 +a

−dt · cvm+1wm+1

vm+1 +d
−µvm+1 (19)

wm+1 = wm +dt ·d2∆wm+1 +dt ·β cvm+1wm+1

vm+1 +d
−dt ·ρwm+1−dt ·∇ · (χ2(vm+1,wm+1)∇vm+1).

This is the Implicit Euler Method which depends on both
(x,y) ∈Ω for each element Ei and the boundary conditions
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∇um+1 ·n = 0, ∇vm+1 ·n = 0, ∇wm+1 ·n = 0, m≥ 0. (20)

From the initial values u0,v0, and w0, we compute the next
iterations (u1,v1,w1), . . . ,(uN ,vN ,wN). The system (19) is
solved by FEM, assuming that u0,v0,w0 ∈C2(Ω̄), see (Dou-
glas and Dupont, 1970). To avoid some complications which
arise from the nonlinearity involved in (19), the terms cor-
responding to temporal variation are solved using a semi-
implicit Runge-Kutta method of second order. The two steps
of this computational process are depicted in the following.
First, the right side of equations (1) are rewritten as

F(u,v,w) = d0∆u+αu(1− u
K(x,y)

)− buv
u+a

,

G(u,v,w) = d1∆v+ γ
buv

u+a
− cvw

v+d
−µv, (21)

H(u,v,w) = d2∆w+β
cvw
v+d

−ρw−∇ · (χ2(v,w)∇v).

The first step of the RK–method of second order consists in
an one Euler step computed at central point of each time in-
terval.

um+1/2 = um +
dt
2
·F(um,vm,wm) (22)

vm+1/2 = vm +
dt
2
·G(um,vm,wm) (23)

wm+1/2 = wm +
dt
2
·H(um,vm,wm) (24)

In the second step, computations are made at time m+ 1
like

um+1 = um +dt ·F(um+1/2,vm+1/2,wm+1/2) (25)

vm+1 = vm +dt ·G(um+1/2,vm+1/2,wm+1/2) (26)

wm+1 = wm +dt ·H(um+1/2,vm+1/2,wm+1/2) (27)

Now we considered the diffusion in an implicit form, then
the schema becomes a semi-implicit one. For each step,
the equations are solved by applying the FEM Galerkin-Ritz
method described above.The same scheme of discretization
is applied to Model (2).
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ABSTRACT

Salmonella enterica is a gut-associated bacterial pathogen that can invade host cells and disseminate through the body us-
ing complex molecular machinery. The interplay between the host immune response and the bacteria is filled with many
interactions at different complexity levels and molecular scales. This host-pathogen interaction can be modelled through re-
action networks (RNs). RNs are mathematical models that represent interactions and dynamics of its components to provide
a quantitative framework for studying complex biological processes. Even though RNs has been used to model biological
processes, the multilevel dynamics of host-pathogen interaction is hard to model with current modelling approaches that limit
the insights of the system. Here we show that the infection process of Salmonella enterica and its interplay with the host
immune system can be modelled through RNs to form a host-pathogen model and gain insight into key processes of infection.

Keywords:

Mathematical Modelling, Pathogenesis, Host-Pathogen Interaction, Salmonella enterica

RESUMEN

Salmonella enterica es un patógeno bacteriano asociado al intestino que puede invadir las células del huésped y diseminarse a
través del cuerpo usando maquinaria molecular compleja. La interacción entre la respuesta inmune del huésped y la bacteria
está llena de muchas interacciones en diferentes niveles de complejidad y escalas moleculares. Esta interacción huésped-
patógeno se puede modelar a través de redes de reacción. Las redes de reacción son modelos matemáticos que representan
interacciones y dinámicas de sus componentes para proporcionar un marco cuantitativo para el estudio de procesos biológicos
complejos. Aunque las redes de reacción se han utilizado para modelar procesos biológicos, la dinámica multinivel de la
interacción huésped-patógeno es difícil de modelar con los enfoques de modelado actuales que limitan el entendimiento del
sistema. Aquí mostramos que el proceso de infección de Salmonella enterica y su interacción con el sistema inmunologico
del huésped se pueden modelar a través de redes de reacción para formar un modelo de patógeno-hospedero y obtener
información sobre los procesos clave de infección.

Palabras Claves:

Modelamiento Matemático, Patogénesis, Interacción Patógeno-Hospedero, Salmonella enterica
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1 INTRODUCTION

P athogenesis refers to the process by which a pathogen
causes disease within a host organism. It involves a se-

ries of interactions between the pathogen and the host, lead-
ing to the development and progression of the disease. Un-
derstanding the pathogenic processes is crucial since it pro-
vides insights into how pathogens invade the host, evade im-
mune responses, and cause tissue damage. By unraveling
the mechanisms underlying pathogenesis, researchers can
identify potential targets for intervention, develop effective
treatments, and design preventive strategies such as vaccines
(Karkey et al., 2018).
Moreover, studying the pathogenesis of specific pathogens,
such as Salmonella enterica, allows us to gain a deeper un-
derstanding of the factors that contribute to their virulence,
transmission, and persistence within the host. Through this
knowledge, we can develop more targeted approaches to
combat and control infectious diseases.
There is a plethora of modelling technologies one can use,
each one with their pros and cons (Veloz, 2019), but Reac-
tion Networks (RNs) stand out for the modelling of complex
host-pathogen interactions (Loskot et al., 2019). In this ar-
ticle we rely on them since they shine where different com-
ponents interact with each other using reactions. These re-
actions are specific to each process (e.g. cell growth, infec-
tion, cell death, etc.) and they are independent of each other
in time scales (Loskot et al., 2019; Lambusch et al., 2018).
The emergence of dangerous pathogens presents the need to
research their infection process to develop better treatment
strategies. The need to obtain information at different lev-
els of complexity is more and more a necessity in biological
research. Here we propose a RNs model to show that com-
plex host-pathogen interactions can be modelled by using S.
enterica as an example.

2 PATHOGENESIS OF Salmonella enterica

Salmonella enterica (S. enterica) is a pathogenic bacterium
primarily associated with gastrointestinal infections. It is
widely studied as a model organism for understanding the
mechanisms of disease. Within the species, various serovars
exist, with S. enterica sv. Typhimurium and S. enterica sv.
Typhi being the most relevant (Jajere, 2019).
S. Typhimurium is known to infect a wide range of hosts,
including humans and animals, while S. Typhi specifically
targets humans. Even though there are notable differences
in the severity and progression of the diseases caused by
these two serovars, they share many common characteristics
that contribute to their ability to infect their respective hosts
(Jajere, 2019).
Both S. Typhimurium and S. Typhi possess a set of virulence
factors and mechanisms that enable them to colonize and
invade the host’s intestinal tract. These factors include
adhesins that facilitate the attachment of the bacteria to the
intestinal epithelium, invasion proteins that promote the
entry of S. enterica into host cells, and effector proteins

Figure 1: Process of S. enterica infection from oral infection, to
invasion and persistence in organ reservoirs.

delivered via the type III secretion system (T3SS) that
manipulate host cell processes and suppress the immune
response (Hume et al., 2017).
S. enterica is equipped with various survival mechanisms
to evade the immune system and establish a persistent
infection. These include the ability to survive and replicate
within macrophages and other phagocytes, where it can
evade immune clearance and disseminate to other tissues.
Additionally, S. enterica can invade dendritic cells, which
are crucial for initiating immune responses, allowing the
bacterium to influence the host’s immune defenses (Mas-
troeni et al., 2009; Li, 2022; Kurtz et al., 2017).
While S. Typhimurium causes a self-limiting gastroenteritis
in humans, S. Typhi causes a more severe systemic infection
known as typhoid fever. The latter is characterized by
prolonged fever, gastrointestinal symptoms, and potential
complications in various organs. However, despite the
differences in disease severity, the underlying mechanisms
of infection and pathogenesis are shared to a large extent
between these two serovars (Jajere, 2019; Runkel et al.,
2013).

INTESTINAL INFECTION

First and foremost, S. enterica enters the host by ingestion
of contaminated food or water (Figure 1). Various sources
can contribute to the contamination, including raw or under-
cooked poultry, eggs, unpasteurized dairy products, and raw
fruits and vegetables that have been exposed to fecal matter
containing S. enterica. Upon ingestion, S. enterica passes
through the harsh acidic environment of the stomach and
eventually reaches the small intestine, which is its primary
target for colonization (Hume et al., 2017; Li, 2022; Runkel
et al., 2013).
Within the intestinal tract, S. enterica encounters a dynamic
microenvironment characterized by changes in pH, tempera-
ture, and nutrient availability. These environmental cues act
as signals that trigger specific adaptive responses in S. enter-
ica, allowing the bacterium to adapt, survive, and establish
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infection within the intestinal environment (Runkel et al.,
2013; Spector and Kenyon, 2012; Mastroeni et al., 2009; Li,
2022).
S. enterica exploits specialized epithelial cells called M cells,
which are primarily located in the gut-associated lymphoid
tissue (GALT), including the Peyer’s patches (lymphoid fol-
licles found in the small intestine) (Mastroeni et al., 2009;
Li, 2022; Jajere, 2019). M cells lack the protective mucus
layer present in other intestinal epithelial cells, making them
particularly vulnerable to bacterial invasion. S. enterica uti-
lizes the molecular machinery of the T3SS to inject virulence
factors directly into the M cells (Mastroeni et al., 2009; Li,
2022). These injected virulence factors facilitate the breach
of the epithelial barrier, enabling S. enterica to gain entry
into the underlying tissues (Mastroeni et al., 2009).
Once S. enterica has successfully invaded M cells, it subse-
quently gains access to the underlying epithelial cells. Within
these cells, S. enterica triggers its own uptake through a pro-
cess called "triggered phagocytosis". This process involves
the manipulation of host cell signaling pathways by S. en-
terica, leading to the engulfment of the bacterium by the
epithelial cells. Once inside, S. enterica harnesses the host
cell’s machinery to replicate, creating localized infection foci
called "Salmonella-containing vacuoles" (SCVs). S. enter-
ica manipulates the host cell’s cytoskeleton and molecular
processes to establish a protected replication niche favorable
for its survival and proliferation (Mastroeni et al., 2009; Li,
2022; Dandekar et al., 2015; Ilyas et al., 2017; Fang and
Méresse, 2022).
Once epithelial cells from the intestinal tract have been in-
fected, they act as a reservoir for further intestinal infections.
S. enterica is able to induce cell death in these cells, making
them burst open and releasing the bacteria (Mastroeni et al.,
2009).

SYSTEMIC INFECTION

S. enterica has the ability to invade various immune system
cells, macrophages being a prominent target (Gogoi et al.,
2018) along with dendritic cells (Mastroeni et al., 2009; Li,
2022).
Once inside the SCV, S. enterica actively manipulates host
cell’s machinery to create a replication niche. The bacterium
secretes effector proteins through its T3SS into the cyto-
plasm of the host cell. These effectors modulate various
cellular processes, including cytoskeletal rearrangements,
vesicular trafficking, and signaling pathways, to promote
SCV integrity and nutrient acquisition (Li, 2022; Mastroeni
et al., 2009).
During the course of infection, macrophages are recruited
to the site of S. enterica invasion in an attempt to sup-
press the pathogen. However, S. enterica has developed
several evasion strategies to survive and replicate within
macrophages. These mechanisms include the production
of efflux pumps to expel antimicrobial peptides, modifi-
cation of lipopolysaccharide structure to avoid immune
recognition, modification of macrophage polarization from a

proinflammatory (M1 type) to an antiinflamatory (M2 type),
and inhibition of phagosome-lysosome fusion to prevent
bacterial degradation (by modifying the lipid composition of
the SCV membrane and interfering with the recruitment of
lysosomal components) (Li, 2022).
By surviving within macrophages, S. enterica can evade
immune responses and establish a persistent infection (Mas-
troeni et al., 2009; Li, 2022). The ability of S. enterica to
persist within macrophages contributes to its evasion of the
immune system and establishment of a systemic infection.
Another set of immune cells that S. enterica can invade
are dendritic cells. These cells are found in the Peyer’s
patches. Along with macrophages, Salmonella can make
its way inside dendritic cells by signalling phagocytosis
using pathogen-associated molecular patterns (PAMPs) that
are recognized by immune system cells. After invasion,
Salmonella can use dendritic cells as vehicles to reach
the mesentheric lymph node, facilitating migration and
dissemination through the system (Li, 2022). Dendritic
cells, when detecting a bacterial pathogen, can activate killer
T cells to target and remove the pathogen from the infection
site (Wick, 2007; Tam et al., 2008).
Infection and inflammatory responses activate the recruit-
ment of monocytes to the affected area. Monocytes are a
special type of mononuclear phagocytes that leave the bone
marrow to the site of infection, releasing antimicrobial com-
ponents to control the spread of S. enterica. Monocytes once
in the site of infection will differentiate into macrophages
or dendritic cells, which can be infected by S. enterica
(Li, 2022; Tam et al., 2008). Along with monocytes,
neutrophils also react to inflammatory responses in the
site of infection. This type of immune cell is short-lived
and similarly to monocytes, they will be the first line of
immune defense against S. enterica infection (Cheminay
et al., 2004). They are considered a very effective control
of intracellular pathogens. Their high numbers present
in the body at all times make them a constant monitoring
agent against infections, although they seem to have a lower
effect against non-typhoidal S. enterica (Castanheira and
García-del Portillo, 2017).
As the infection progresses, S. enterica can breach the
intestinal epithelial barrier and disseminate to other tissues
and organs. The bacteria can access the bloodstream by
directly penetrating the intestinal epithelium or by crossing
the gut-associated lymphoid tissue. Once in the bloodstream,
S. enterica can travel to various organs throughout the body,
including the liver, spleen, kidneys, and bone marrow.
This systemic dissemination leads to the establishment of
infection in these organs and contributes to the severity of
the disease. The ability of S. enterica to survive and multiply
within host cells, including epithelial cells and immune
system cells, facilitates its dissemination and persistence
within different body compartments (Runkel et al., 2013;
Jajere, 2019; Hume et al., 2017).
The process of pathogenesis of S. enterica although well
understood still impose challenges to the treatment of
the bacteria, specially with the appearance of multidrug-
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resistant strains and the increase of infection rates of
dangerous serovars (e.g. S. Typhi) (Karkey et al., 2018).
This is why we developed a RNs model of the infection
process of S. enterica to determine the main processes
and stages that are required for the bacteria to develop the
intestinal and systemic progression of disease.

3 REACTION NETWORKS MODELING OF
HOST-PATHOGEN INTERACTIONS

RNs are mathematical models that represent the interactions
and dynamics of biochemical reactions within a biological
system (Dittrich and di Fenizio, 2007). They provide a
quantitative framework for studying complex biological
processes and understanding the behavior of biochemical
networks. RNs capture the connectivity between molecular
species, the rates of biochemical reactions, and the depen-
dencies between different reactions. By characterizing the
network of interactions, RNs enable the simulation and
prediction of how changes in molecular concentrations and
reaction rates influence the overall behavior of the system
(August and Papachristodoulou, 2009; Centler et al., 2008;
Styles et al., 2021).
The usefulness of RNs in modeling biological processes lies
in their ability to capture the intricate details of biochemical
reactions and their dependencies. They provide a systematic
approach to study the dynamics of cellular processes,
signaling pathways, and metabolic networks. RNs allow
researchers to test hypotheses, simulate different scenarios,
and gain insights into the underlying mechanisms of com-
plex biological phenomena. Moreover, they can be used to
integrate experimental data, validate theoretical models, and
make predictions about the behavior of the system under
different conditions (Loskot et al., 2019; Lambusch et al.,
2018; Zhang and Zhou, 2019; Duso and Zechner, 2020).
Since complex biological and chemical processes are hard
to understand on their own, modelling techniques provide a
great alternative to gain insight on complex systems (Wen
et al., 2023). RNs have been widely used for modelling
complex networks and processes where computational
approaches are needed. Anything from chemical processes
and gene regulatory networks to population dynamics and
symbiosis interaction can be benefited by them. From
molecular biology to biotechnological applications, RNs are
used to gain insight of processes with non-linear dynamics
(Loskot et al., 2019).
One of such applications is to understand the interaction of
two organisms in the context of symbiosis, which in general
terms could be mutualistic or parasitic. These interactions
are highly regulated by genes, nutrient acquisition, immune
suppression and molecular communication. Such complex
systems can gain a lot of insight from RNs, recognizing that
components are not limited to a on/off state or the same time
scale (Centler et al., 2008; August and Papachristodoulou,
2009).
In the context of host-pathogen interactions, RNs are

valuable tools for modeling and understanding the dynamic
interplay between the host and the pathogen. They can
capture the molecular interactions involved in infection,
immune responses, and pathogen evasion strategies. By
constructing RNs that represent the interactions between
host cells and pathogens, researchers can simulate the
progression of infection of disease, investigate the effects
of host immune responses, and identify potential targets for
therapeutic intervention (Vlazaki et al., 2019; Styles et al.,
2021). These models can provide valuable insights into
the pathogenesis of specific pathogens, such as S. enterica,
shedding light on the underlying molecular mechanisms
driving the infection process.
It is of special interest the use of RNs to model the process
of infection. Since S. enterica is a well known model of
gastrointestinal infection, it comes as a great candidate to
evaluate the systemic pathogenesis model. In this case we
evaluate the process of pathogenesis from the intestinal
survival and invasion, the internalization of S. enterica into
epithelial cells and macrophages, and finally the systemic
dissemination and infection.

4 SYSTEMIC PATHOGENESIS MODEL

The model uses S. enterica as its model organism. The
components of the RNs model are shown in Table 1 and
the network graph is shown in Figure 2. For the given
components, 27 reactions (r1 − r27) are extracted from
literature based on the main processes from S. enterica
infection:

r1 : Sen
Invasion−−−→ SMc : S. enterica senses the intestinal

environment and nutrients that activate the molecular ma-
chinery of the T3SS, thus granting it the ability to invade
specialized epithelial cells. These are called M cells and are
a common way of infection of S. enterica since they lack a
key protective mucus layer.
r2 : Sen +Dc

Invasion−−−→ SDc : From the intestinal environment,
S. enterica can also invade dendritic cells that are between
the gap junctions of epithelial cells in the intestine, making

Table 1: Model components and their respective annotations

Sen S. enterica in intestinal lumen
SMc S. enterica in M cells
Mp Macrophages

SMp S. enterica in Macrophages
Dc Dendritic cells

SDc S. enterica in Dendritic cells
SPp S. enterica in Peyer’s Patches
Mln S. enterica in Mesenteric Lymph Node
SSy Systemic infection (bacteremia)
Rs S. enterica in Organ Reservoirs
My Monocytes
Np Neutrophils
∅ Cell death
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it a good intermediary for later spreading systemically.
r3 : SMc + Mp

Invasion−−−→ SMp : S. enterica can also invade
macrophages that are found roaming around the epithelial
barrier. It survives inside them and can travel throughout the
body via blood or the mesenteric lymph node. This becomes
a hostile environment for S. enterica, where it needs to
activate and deactivate host processes to avoid the normal
immune response of the cell.
r4 : SMc

Invasion−−−→ SPp+Np+My : From M cells, S. enterica can
pierce through the epithelial barrier and reach a lymphoid
tissue called Peyer’s patches. This process of infection
releases inflammatory responses that signal neutrophils and
monocytes to fight bacteria at the site of infection.
r5 : SPp + Dc

Invasion−−−→ SDc : From the Peyer’s patches, S.
enterica can invade dendritic cells that are recruited to the
site of infection.
r6 : SPp + Mp

Invasion−−−→ SMp : From the Peyer’s patches, S.
enterica can invade macrophages that are recruited to the
site of infection.
r7 : Mln +Dc

Invasion−−−→ SDc : From the mesenteric lymph node,
S. enterica can invade dendritic cells that are recruited to the
site of infection.
r8 : Mln+Mp

Invasion−−−→ SMp : From the mesenteric lymph node,
S. enterica can invade macrophages that are recruited to the
site of infection.
r9 : Rs + Mp

Invasion−−−→ SMp : From the organ reservoirs, S.
enterica can invade macrophages that are recruited to the
site of infection.
r10 : Rs + Dc

Invasion−−−→ SDc : From the organ reservoirs, S.
enterica can invade dendritic cells that are recruited to the
site of infection.
r11 : SDc

Dissemination−−−−−−→ SPp +Mln + SSy +Rs +Np +My : After
invading dendritic cells, S. enterica can travel to different
sites to spread infection, such as the Peyer’s patches, mesen-
teric lymph node, the bloodstream and organ reservoirs.
This process of infection releases inflammatory responses
that signal neutrophils and monocytes to fight bacteria at the
site of infection.
r12 : SPp

Dissemination−−−−−−→ Mln + Np + My : From the Peyer’s
patches, S. enterica can gain access to the mesenteric lymph
node, and thus, disseminating from it to other sites. This
process of infection releases inflammatory responses that
signal neutrophils and monocytes to fight bacteria at the site
of infection.
r13 : Mln

Dissemination−−−−−−→ SSy : From the mesenteric lymph node,
S. enterica can disseminate through the blood stream.
r14 : SMp

Dissemination−−−−−−→ SSy + Rs + Np + My : Infected
macrophages can spread S. enterica through the bloodstream
and organ reservoirs. This process of infection releases in-
flammatory responses that signal neutrophils and monocytes
to fight bacteria at the site of infection.
r15 : SSy

Dissemination−−−−−−→ Rs +Np +My : From the bloodstream, S.
enterica can reach organ reservoirs, promoting a persistent
infection in them.
r16 : Rs

Dissemination−−−−−−→ SSy : From the organ reservoirs, S.

enterica can disseminate through the bloodstream, reaching
different sites to infect and making it a persistent infection.

r17 : Np + SPp
Immunity−−−−→ ∅ : Neutrophils recruited to the

site of infection in the Peyer’s patches, fight S. enterica
by engulfing and later degrading it. Since neutrophils are
short-lived, the result of this process becomes cell death for
both parties.

r18 : Np +Mln
Immunity−−−−→ ∅ : Neutrophils recruited to the site

of infection in the mesenteric lymph node, fight S. enterica
by engulfing and later degrading it. Since neutrophils are
short-lived, the result of this process becomes cell death for
both parties.

r19 : Np + Rs
Immunity−−−−→ ∅ : Neutrophils recruited to the site

of infection in the organ reservoirs, fight S. enterica by
engulfing and later degrading it. Since neutrophils are
short-lived, the result of this process becomes cell death for
both parties.

r20 : My +SPp
Immunity−−−−→ Dc : Monocytes recruited to the site of

infection in the Peyer’s patches, differentiate into dendritic
cells, which signal other immune cells to fight the infection
of S. enterica.
r21 : My +Mln

Immunity−−−−→ Dc : Monocytes recruited to the site
of infection in the mesenteric lymph node, differentiate into
dendritic cells, which signal other immune cells to fight the
infection of S. enterica.
r22 : My + SSy

Immunity−−−−→ Dc : Monocytes recruited to the site
of infection in the bloodstream, differentiate into dendritic
cells, which signal other immune cells to fight the infection
of S. enterica.
r23 : My +Rs

Immunity−−−−→ Dc : Monocytes recruited to the site of
infection in the organ reservoirs, differentiate into dendritic
cells, which signal other immune cells to fight the infection
of S. enterica.
r24 : My + SPp

Immunity−−−−→ Mp : Monocytes recruited to the
site of infection in the Peyer’s patches, differentiate into
macrophages, which fight the infection of S. enterica by
engulfing and degrading it.

r25 : My +Mln
Immunity−−−−→ Mp : Monocytes recruited to the site

of infection in the mesenteric lymph node, differentiate into
macrophages, which fight the infection of S. enterica by
engulfing and degrading it.

r26 : My +SSy
Immunity−−−−→Mp : Monocytes recruited to the site of

infection in the bloodstream, differentiate into macrophages,
which fight the infection of S. enterica by engulfing and
degrading it.

r27 : My + Rs
Immunity−−−−→ Mp : Monocytes recruited to the

site of infection in the organ reservoirs, differentiate into
macrophages, which fight the infection of S. enterica by
engulfing and degrading it.

All these reactions are a simplification of the complex
process of infection, immune response and host-pathogen
interaction. With these key processes it’s important to notice
that there are main host cells that play a role as a target of
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Figure 2: Network graph of the infection process of Salmonella
enterica. Purple edges represent S. enterica invasion to host cells,

blue edges represent dissemination of S. enterica (lymphoid tissue,
bloodstream and organ reservoirs), red edges represent immune

response to fight S. enterica.

S. enterica like M cells, macrophages and dendritic cells, or
as specialized cells to fight the infection such as neutrophils
and monocytes.
It is also important to mention that throughout the infection
process of S. enterica, several environments are found and
will affect bacteria in different ways. The high nutrient
content of the intestine grants S. enterica the ability to grow
and activate the molecular machinery to begin the infection
process. In a different way, the nutrient starved and harsh
environment found inside macrophages will delay bacterial
growth and activate survival instead. These differences are
key for further inspection of the model since they will affect
the kinetics of the reactions and thus, will affect how fast
certain processes will occur.
In a similar way, S. enterica must avoid being detected by
the immune system and has to rely on specific genes to
suppress the immune response of the host (such as PhoP/Q
two-component system). The dynamics of these processes
add another layer of complexity to the system since they will
affect the kinetics of the interactions negatively. Finally, the
fact that S. enterica uses reservoirs to maintain the infection
and produce a subsequent reinfection is a key process to
understanding the infection process of S. enterica. It not
only affects the survival aspects of the bacteria in the whole
process, but also how the system regulates itself.
For the identification of key processes, simulations are re-
quired to check if the model is robust, as well as to compare
different scenarios of infection (e.g. typhoidal infection vs
non-typhoidal infection, immunized host vs non-immunized
host, etc.)

5 SIMULATION OF THE MODEL

Here are shown the results of the simulations of the systemic
pathogenesis model. In this case, the only initial conditions
were in the Sen, My, Np, Mp and Dc components, as they
are both the infection of S. enterica and the immune cells
present in the body at all times. From literature, the kinetic
constants were determined regarding invasion Tahoun et al.
(2012), infection (Tam et al., 2008; Monack et al., 1996;
Bueno et al., 2008) and immune response (Cheminay et al.,
2004; Castanheira and García-del Portillo, 2017; Tam et al.,
2008; Hurley et al., 2014).
In Figure 3 it is possible to see that the infection of typhoidal
S. enterica is quick and proceeds to generate infection sites
throughout the body. In this case, S. enterica survives within
the host due to the generation of reservoirs which both
increases bacterial density and decreases immune response.
This goes in hand with literature, where common ways to
test for S. enterica infection is to check samples of bone
marrow, blood and stool (Wain et al., 2001; Tennant et al.,
2015). Regarding the immune response, it is evident that
neutrophils are the most abundant ones and the first one to
fight infection, although since they have a short lifespan their
response is hindered in the long run. In contrast, monocytes
are seen to have a more steady production over time, which
may be due to the differentiation into macrophages and
dendritic cells instead of fighting the infection directly by
themselves. Interestingly, Peyer’s patches, the mesentheric
lymph node and organ reservoirs have a small peak shortly
after infection, which is rapidly reduced just to grow expo-
nentially afterwards. This effect could be due to the rapid
bacterial growth in infection sites that act as reservoirs for
S. enterica, suggesting that the process of initial infection
and shortly after, the dissemination of those bacteria to other
tissues, is a key process for persistent systemic infection.
In the modern world, efforts for the development of antimi-
crobial treatments as well as immunization alternatives have
reduced the threat of S. enterica. Given that non-typhoidal
infection of S. enterica is much less lethal than typhoidal
infections (30% mortality without antibiotic treatment), the
progression of the disease in a common individual may look
different. In Figure 4 it is possible to see that the clearance
of infection is fast due to the greater immune response in
these simulations. Even though S. enterica still achieved
a systemic infection, the concentration in contrast with
Figure 3 is minimal.
From this model we can extract the following points. 1)
The infection process of S. enterica is a complex process
that is filled with many host-pathogen interactions. 2) These
interactions are affected by the dynamics of the immune
response and the possibility of reinfections due to reservoirs.
3) Even though the presented model is a simplification of
what is happening in a real situation, it can help us notice
key processes of infection, such as the invasion of Peyer’s
patches and the dissemination through the mesenteric lymph
node and organ reservoirs.
This model goes to show that RNs are a helpful way to
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visualize and understand how multilevel processes like this
happen.

6 DISCUSSION

We found that the systemic pathogenesis model brings up
information that other modelling approaches fail to do. This
is due to the nature of RNs where components are only a part
of the model and for it to be fully functional, interactions
or reactions are needed to control and understand how the
dynamics of the system change at different parts of the
infection process.
With the above results, it is possible to see some key pro-
cesses of the host-pathogen interaction between S. enterica
and the host. One of those key processes is the spread of
S. enterica through the Peyer’s patches and the mesenteric
lymph node, mostly due to the amount of intermediaries
that can allow bacteria to travel from the site of infection to
organ reservoirs. The dynamics of these interactions suggest
that it is at the very least, a very common path of S. enterica
to disseminate to reservoirs.
These interactions have been modeled through biological
phenomena that has been researched throughout the years.
S. enterica is a well known pathogen and model of study for
host-pathogen interaction and what we show is a simplifica-
tion of complex interactions. These interactions show that
S. enterica is a specialized bacterium that can suppress the
immune response of the host cells and that it correlates with
the available data.
The data available usually corresponds to genomic analysis,
systems biology techniques and reaction rate models (Styles
et al., 2021; Stelling, 2004). These models usually are
specific to gene regulatory networks of a determined species
or interaction processes in a controlled environment. These
models usually lack the different layers of complexity found
in biological systems.
Specifically to S. enterica, systems of ordinary differential
equations, metabolic network analysis and others has been
done (Bumann, 2009; Lo, 2007; Sweilam et al., 2022).
These models are usually used in the area of epidemiology
for disease spread in a specific situation. That is the case
of typhoid fever, where a few studies have reported the
emergence, spread and control of the disease by using
mathematical models (Gauld et al., 2018; Pitzer et al.,
2015).
These reports show that the insights gained from modelling
dynamics allow for unexpected results. That is the case
of Pitzer et al. (2015) where population density and cross-
immunity was not enough to explain typhoid emergence in
Blantyre, but increase in the duration of infectiousness and
transmission rate did. This goes to show that data on its own
is not enough to get the full picture of the processes and
dynamics of a system, and that computational efforts are
needed to uncover them.
In a similar manner, Gauld et al. (2018) developed a math-
ematical model for typhoid transmission in Santiago, Chile.

Their model showed that vaccination and reduced exposure
to long-cycle transmission were important factors for the
decline of incidence. Although the approach of these two
cases are on a disease level and not an infection level. These
studies reflect the need of better alternatives to what has
been done on mathematical modelling efforts to complement
the reports available, specially within the infection process
bacteria.
In regards to this problematic, a study built a so called
"within-host" mathematical model to understand the patho-
physiology of S. Typhi from ingestion to the full progression
of disease. What they found was that the migration of
bacteria to the caecal lymph node was a key step for the
dissemination of S. Typhi and the progression of disease.
Even though the analysis is very robust, it lacks major com-
ponents and interactions that are crucial in the pathogenesis
of S. enterica, making it a powerful but simple model. This
makes RNs a useful alternative to these types of models.
Even though network analysis is somewhat common in
biological sciences, the use of RNs is very limited, even
more in host-pathogen interactions. One such case of a
network analysis is that of Zhang et al. (2022), where they
evaluated the network model of a inter-host disease spread-
ing with intra-host evolutionary dynamics. This study is a
great example of modelling biological systems at different
layers of complexity (inter-host and intra-host) since the
components work independently from one another and that
can have great impact on the results and comparisons of the
model with what is actually happening.
Another example is that of the complex interactions between
bacteriophages, bacteria and eukaryotic hosts with the
goal of understanding these interactions to develop phage
therapies as an alternative to antibiotics. This is another
example of host-pathogen interaction at different layers
of complexity, where RNs have been used in flux-balance
analysis (Styles et al., 2021).
Recent studies regarding endosymbiosis (a type of symbiosis
where one species inhabits inside another species) proposed
reaction network model to show the interactions between
organisms (Veloz and Flores, 2021b,a). This study showed
the endosymbiotic relationship between a coral host and
its symbiont (Symbiodinium sp.). This is another example
of host-pathogen interaction but in this case both species
cooperate for survival (Veloz and Flores, 2021a). This co-
operation is tightly regulated by evolution and biochemical
pathways that helps both species live in harmony.
The above mentioned examples suggest that there is an
unexplored niche of research to develop new models that
can fill the gaps that other studies failed to complete. As
such, RNs models, specially those related to host-pathogen
interactions are not only an emerging technology for the
modelling of host-pathogen interactions, but also a way to
model them at the different levels of complexity that they
appear in nature.
Some considerations that need to be made in this model
are that: 1) it is necessary to refine the organismic and
biochemical reactions described, and 2) they can be applied
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to other pathogens with similar pathogen-host interactions,
or even that these reactions serve as support to describe
different cases. Nonetheless, this model shows that the
intricate interactions of S. enterica can be simplified without
losing significant information of the system, all while
benefiting from the framework of RNs.

7 CONCLUSION

The complexity of biological processes can be simplified
to accommodate a mathematical model using RNs as a
modelling framework. This model sets a basis for the future
development of modelling technologies for the research
of host-pathogen interactions with the goal to understand
the key steps in infection and develop strategies to fight
pathogens.
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Figure 3: Simulation of the infection process of S. enterica. The evolution of the 12 components of the model are shown as the
concentration change over time.
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Figure 4: Simulation of the infection process of S. enterica in a immunized host. The evolution of the 12 components of the model are
shown as the concentration change over time. The parameters of the immune response were increased to simulate a vaccinated host.

REFERENCES
August, E. and Papachristodoulou, A. (2009) ‘Efficient, sparse biolog-

ical network determination’. BMC Systems Biology, 3(1). doi:
10.1186/1752-0509-3-25. Available at: https://doi.org/10.
1186/1752-0509-3-25.

Bueno, S.M., González, P.A., Carreño, L.J., Tobar, J.A., Mora, G.C.,
Pereda, C.J., Salazar-Onfray, F. and Kalergis, A.M. (2008) ‘The ca-
pacity of salmonella to survive inside dendritic cells and prevent anti-
gen presentation to t cells is host specific’. Immunology, 124(4),
p. 522–533. doi:10.1111/j.1365-2567.2008.02805.x. Available at:
http://dx.doi.org/10.1111/j.1365-2567.2008.02805.x.

Bumann, D. (2009) ‘System-level analysis of salmonella metabolism during
infection’. Current Opinion in Microbiology, 12(5), p. 559–567. doi:
10.1016/j.mib.2009.08.004. Available at: https://doi.org/10.
1016/j.mib.2009.08.004.

Castanheira, S. and García-del Portillo, F. (2017) ‘Salmonella populations
inside host cells’. Frontiers in Cellular and Infection Microbiology,
7. doi:10.3389/fcimb.2017.00432. Available at: http://dx.doi.
org/10.3389/fcimb.2017.00432.

Centler, F., Kaleta, C., di Fenizio, P.S. and Dittrich, P. (2008) ‘Comput-
ing chemical organizations in biological networks’. Bioinformatics,
24(14), p. 1611–1618. doi:10.1093/bioinformatics/btn228. Available
at: https://doi.org/10.1093/bioinformatics/btn228.

Cheminay, C., Chakravortty, D. and Hensel, M. (2004) ‘Role of neutrophils
in murine salmonellosis’. Infection and Immunity, 72(1), p. 468–477.
doi:10.1128/iai.72.1.468-477.2004. Available at: http://dx.doi.
org/10.1128/IAI.72.1.468-477.2004.

Dandekar, T., Fieselmann, A., Fischer, E., Popp, J., Hensel, M. and Nos-
ter, J. (2015) ‘SalmonellaâC”how a metabolic generalist adopts an
intracellular lifestyle during infection’. Frontiers in Cellular and In-
fection Microbiology, 4. doi:10.3389/fcimb.2014.00191. Available
at: https://doi.org/10.3389/fcimb.2014.00191.

Dittrich, P. and di Fenizio, P.S. (2007) ‘Chemical organisation theory’. Bul-
letin of Mathematical Biology, 69(4), p. 1199–1231. doi:10.1007/
s11538-006-9130-8. Available at: https://doi.org/10.1007/
s11538-006-9130-8.

Duso, L. and Zechner, C. (2020) ‘Stochastic reaction networks in dynamic
compartment populations’. Proceedings of the National Academy of
Sciences, 117(37), p. 22674–22683. doi:10.1073/pnas.2003734117.
Available at: https://doi.org/10.1073/pnas.2003734117.

Fang, Z. and Méresse, S. (2022) ‘Endomembrane remodeling and dynam-
ics in salmonella infection’. Microbial Cell, 9(2), p. 24–41. doi:
10.15698/mic2022.02.769. Available at: https://doi.org/10.
15698/mic2022.02.769.

Gauld, J.S., Hu, H., Klein, D.J. and Levine, M.M. (2018) ‘Typhoid fever
in santiago, chile: Insights from a mathematical model utilizing
venerable archived data from a successful disease control program’.

doi: https://doi.org/10.58560/rmmsb.v03.n02.023.06

https://doi.org/10.1186/1752-0509-3-25
https://doi.org/10.1186/1752-0509-3-25
http://dx.doi.org/10.1111/j.1365-2567.2008.02805.x
https://doi.org/10.1016/j.mib.2009.08.004
https://doi.org/10.1016/j.mib.2009.08.004
http://dx.doi.org/10.3389/fcimb.2017.00432
http://dx.doi.org/10.3389/fcimb.2017.00432
https://doi.org/10.1093/bioinformatics/btn228
http://dx.doi.org/10.1128/IAI.72.1.468-477.2004
http://dx.doi.org/10.1128/IAI.72.1.468-477.2004
https://doi.org/10.3389/fcimb.2014.00191
https://doi.org/10.1007/s11538-006-9130-8
https://doi.org/10.1007/s11538-006-9130-8
https://doi.org/10.1073/pnas.2003734117
https://doi.org/10.15698/mic2022.02.769
https://doi.org/10.15698/mic2022.02.769
https://doi.org/https://doi.org/10.58560/rmmsb.v03.n02.023.06


REVISTA DE MODELAMIENTO MATEMÁTICO DE SISTEMAS BIOLÓGICOS, Vol.3( 2023), No2, e23R07 12 of 13

PLOS Neglected Tropical Diseases, 12(9), p. e0006759. doi:10.1371/
journal.pntd.0006759. Available at: https://doi.org/10.1371/
journal.pntd.0006759.

Gogoi, M., Shreenivas, Meghanashree, M. and Chakravortty, D. (2018)
‘Hoodwinking the big-eater to prosper: The salmonella-macrophage
paradigm’. Journal of Innate Immunity, 11(3), p. 289–299. doi:
10.1159/000490953. Available at: https://doi.org/10.1159/
000490953.

Hume, P.J., Singh, V., Davidson, A.C. and Koronakis, V. (2017) ‘Swiss army
pathogen: The salmonella entry toolkit’. Frontiers in Cellular and
Infection Microbiology, 7. doi:10.3389/fcimb.2017.00348. Available
at: https://doi.org/10.3389/fcimb.2017.00348.

Hurley, D., McCusker, M.P., Fanning, S. and Martins, M. (2014) ‘Salmonel-
laâC“host interactions âC“ modulation of the host innate immune sys-
tem’. Frontiers in Immunology, 5. doi:10.3389/fimmu.2014.00481.
Available at: http://dx.doi.org/10.3389/fimmu.2014.00481.

Ilyas, B., Tsai, C.N. and Coombes, B.K. (2017) ‘Evolution of salmonella-
host cell interactions through a dynamic bacterial genome’. Frontiers
in Cellular and Infection Microbiology, 7. doi:10.3389/fcimb.2017.
00428. Available at: https://doi.org/10.3389/fcimb.2017.
00428.

Jajere, S.M. (2019) ‘A review of salmonella enterica with particular focus on
the pathogenicity and virulence factors, host specificity and antimi-
crobial resistance including multidrug resistance’. Veterinary World,
12(4), p. 504–521. doi:10.14202/vetworld.2019.504-521. Available
at: https://doi.org/10.14202/vetworld.2019.504-521.

Karkey, A., Thwaites, G.E. and Baker, S. (2018) ‘The evolution of
antimicrobial resistance in salmonella typhi’. Current Opin-
ion in Gastroenterology, 34(1), p. 25–30. doi:10 . 1097 / mog .
0000000000000406. Available at: https://doi.org/10.1097/
mog.0000000000000406.

Kurtz, J.R., Goggins, J.A. and McLachlan, J.B. (2017) ‘Salmonella infec-
tion: Interplay between the bacteria and host immune system’. Im-
munology Letters, 190, p. 42–50. doi:10.1016/j.imlet.2017.07.006.
Available at: https://doi.org/10.1016/j.imlet.2017.07.006.

Lambusch, F., Waltemath, D., Wolkenhauer, O., Sandkuhl, K., Rosenke,
C. and Henkel, R. (2018) ‘Identifying frequent patterns in bio-
chemical reaction networks: a workflow’. Database, 2018. doi:
10.1093/database/bay051. Available at: https://doi.org/10.
1093/database/bay051.

Li, Q. (2022) ‘Mechanisms for the invasion and dissemination of
salmonella’. Canadian Journal of Infectious Diseases and Medical
Microbiology, 2022, p. 1–12. doi:10.1155/2022/2655801. Available
at: https://doi.org/10.1155/2022/2655801.

Lo, Y.Y. (2007) Mathematical models for Salmonella transmission dynam-
ics. Ph.D. thesis, Cornell University Honors thesis.

Loskot, P., Atitey, K. and Mihaylova, L. (2019) ‘Comprehensive review
of models and methods for inferences in bio-chemical reaction net-
works’. Frontiers in Genetics, 10. doi:10.3389/fgene.2019.00549.
Available at: https://doi.org/10.3389/fgene.2019.00549.

Mastroeni, P., Grant, A., Restif, O. and Maskell, D. (2009) ‘A dynamic view
of the spread and intracellular distribution of salmonella enterica’. Na-
ture Reviews Microbiology, 7(1), p. 73–80. doi:10.1038/nrmicro2034.
Available at: https://doi.org/10.1038/nrmicro2034.

Monack, D., Raupach, B., Hromockyj, A. and Falkow, S. (1996)
‘Salmonella typhimurium invasion induces apoptosis in infected
macrophages.’ Proc Natl Acad Sci U.S.A., 93(18), p. 9833–9838.
Available at: https://doi.org/10.1073%2Fpnas.93.18.9833.

Pitzer, V.E., Feasey, N.A., Msefula, C., Mallewa, J., Kennedy, N., Dube,
Q., Denis, B., Gordon, M.A. and Heyderman, R.S. (2015) ‘Math-
ematical modeling to assess the drivers of the recent emergence of
typhoid fever in blantyre, malawi’. Clinical Infectious Diseases,
61(suppl 4), p. S251–S258. doi:10.1093/cid/civ710. Available at:
https://doi.org/10.1093/cid/civ710.

Runkel, S., Wells, H.C. and Rowley, G. (2013) ‘Living with stress: A les-
son from the enteric pathogen salmonella enterica’. In Advances in
Applied Microbiology, vol. 83. Elsevier, p. 87–144. doi:10.1016/
b978-0-12-407678-5.00003-9. Available at: https://doi.org/
10.1016/b978-0-12-407678-5.00003-9.

Spector, M.P. and Kenyon, W.J. (2012) ‘Resistance and survival strategies
of salmonella enterica to environmental stresses’. Food Research In-
ternational, 45(2), p. 455–481. doi:10.1016/j.foodres.2011.06.056.

Available at: https://doi.org/10.1016/j.foodres.2011.06.
056.

Stelling, J. (2004) ‘Mathematical models in microbial systems biology’.
Current Opinion in Microbiology, 7(5), p. 513–518. doi:10.1016/j.
mib.2004.08.004. Available at: https://doi.org/10.1016/j.
mib.2004.08.004.

Styles, K.M., Brown, A.T. and Sagona, A.P. (2021) ‘A review of using
mathematical modeling to improve our understanding of bacterio-
phage, bacteria, and eukaryotic interactions’. Frontiers in Microbi-
ology, 12. doi:10.3389/fmicb.2021.724767. Available at: https:
//doi.org/10.3389/fmicb.2021.724767.

Sweilam, N.H., Hasan, M.M.A. and Al-Mekhlafi, S.M. (2022) ‘On variable-
order salmonella bacterial infection mathematical model’. Mathemat-
ical Methods in the Applied Sciences. doi:10.1002/mma.8548. Avail-
able at: https://doi.org/10.1002/mma.8548.

Tahoun, A., Mahajan, S., Paxton, E., Malterer, G., Donaldson, D.S., Wang,
D., Tan, A., Gillespie, T.L., O’Shea, M., Roe, A.J., Shaw, D.J.,
Gally, D.L., Lengeling, A., Mabbott, N.A., Haas, J. and Mahajan,
A. (2012) ‘Salmonella transforms follicle-associated epithelial cells
into m cells to promote intestinal invasion’. Cell Host & Microbe,
12(5), p. 645–656. doi:10.1016/j.chom.2012.10.009. Available at:
http://dx.doi.org/10.1016/j.chom.2012.10.009.

Tam, M.A., Rydström, A., Sundquist, M. and Wick, M.J. (2008) ‘Early
cellular responses to salmonella infection: dendritic cells, mono-
cytes, and more’. Immunological Reviews, 225(1), p. 140–162. doi:
10.1111/j.1600-065x.2008.00679.x. Available at: https://doi.
org/10.1111/j.1600-065x.2008.00679.x.

Tennant, S.M., Toema, D., Qamar, F., Iqbal, N., Boyd, M.A., Marshall, J.M.,
Blackwelder, W.C., Wu, Y., Quadri, F., Khan, A., Aziz, F., Ahmad, K.,
Kalam, A., Asif, E., Qureshi, S., Khan, E., Zaidi, A.K. and Levine,
M.M. (2015) ‘Detection of typhoidal and paratyphoidalsalmonellain
blood by real-time polymerase chain reaction’. Clinical Infectious
Diseases, 61(suppl 4), p. S241–S250. doi:10.1093/cid/civ726. Avail-
able at: http://dx.doi.org/10.1093/cid/civ726.

Veloz, T. (2019) ‘The complexity–stability debate, chemical organization
theory, and the identification of non-classical structures in ecol-
ogy’. Foundations of Science, 25(1), p. 259–273. doi:10.1007/
s10699-019-09639-y. Available at: http://dx.doi.org/10.1007/
s10699-019-09639-y.

Veloz, T. and Flores, D. (2021a) ‘Reaction network modeling of complex
ecological interactions: Endosymbiosis and multilevel regulation’.
Complexity, 2021, p. 1–12. doi:10.1155/2021/8760937. Available
at: https://doi.org/10.1155/2021/8760937.

Veloz, T. and Flores, D. (2021b) ‘Toward endosymbiosis modeling using
reaction networks’. Soft Computing, 25(9), p. 6831–6840. doi:10.
1007/s00500-020-05530-2. Available at: https://doi.org/10.
1007/s00500-020-05530-2.

Vlazaki, M., Huber, J. and Restif, O. (2019) ‘Integrating mathematical
models with experimental data to investigate the within-host dynam-
ics of bacterial infections’. Pathogens and Disease, 77(8). doi:
10.1093/femspd/ftaa001. Available at: https://doi.org/10.1093/
femspd/ftaa001.

Wain, J., Bay, P.V.B., Vinh, H., Duong, N.M., Diep, T.S., Walsh, A.L., Parry,
C.M., Hasserjian, R.P., Ho, V.A., Hien, T.T., Farrar, J., White, N.J.
and Day, N.P.J. (2001) ‘Quantitation of bacteria in bone marrow from
patients with typhoid fever: Relationship between counts and clinical
features’. Journal of Clinical Microbiology, 39(4), p. 1571–1576. doi:
10.1128/jcm.39.4.1571-1576.2001. Available at: http://dx.doi.
org/10.1128/jcm.39.4.1571-1576.2001.

Wen, M., Spotte-Smith, E.W.C., Blau, S.M., McDermott, M.J., Krish-
napriyan, A.S. and Persson, K.A. (2023) ‘Chemical reaction networks
and opportunities for machine learning’. Nature Computational Sci-
ence, 3(1), p. 12–24. doi:10.1038/s43588-022-00369-z. Available at:
https://doi.org/10.1038/s43588-022-00369-z.

Wick, M.J. (2007) ‘Monocyte and dendritic cell recruitment and activa-
tion during oral salmonella infection’. Immunology Letters, 112(2),
p. 68–74. doi:10.1016/j.imlet.2007.07.007. Available at: https:
//doi.org/10.1016/j.imlet.2007.07.007.

Zhang, J. and Zhou, T. (2019) ‘Markovian approaches to modeling intra-
cellular reaction processes with molecular memory’. Proceedings of
the National Academy of Sciences, 116(47), p. 23542–23550. doi:
10.1073/pnas.1913926116. Available at: https://doi.org/10.
1073/pnas.1913926116.

doi: https://doi.org/10.58560/rmmsb.v03.n02.023.06

https://doi.org/10.1371/journal.pntd.0006759
https://doi.org/10.1371/journal.pntd.0006759
https://doi.org/10.1159/000490953
https://doi.org/10.1159/000490953
https://doi.org/10.3389/fcimb.2017.00348
http://dx.doi.org/10.3389/fimmu.2014.00481
https://doi.org/10.3389/fcimb.2017.00428
https://doi.org/10.3389/fcimb.2017.00428
https://doi.org/10.14202/vetworld.2019.504-521
https://doi.org/10.1097/mog.0000000000000406
https://doi.org/10.1097/mog.0000000000000406
https://doi.org/10.1016/j.imlet.2017.07.006
https://doi.org/10.1093/database/bay051
https://doi.org/10.1093/database/bay051
https://doi.org/10.1155/2022/2655801
https://doi.org/10.3389/fgene.2019.00549
https://doi.org/10.1038/nrmicro2034
https://doi.org/10.1073%2Fpnas.93.18.9833
https://doi.org/10.1093/cid/civ710
https://doi.org/10.1016/b978-0-12-407678-5.00003-9
https://doi.org/10.1016/b978-0-12-407678-5.00003-9
https://doi.org/10.1016/j.foodres.2011.06.056
https://doi.org/10.1016/j.foodres.2011.06.056
https://doi.org/10.1016/j.mib.2004.08.004
https://doi.org/10.1016/j.mib.2004.08.004
https://doi.org/10.3389/fmicb.2021.724767
https://doi.org/10.3389/fmicb.2021.724767
https://doi.org/10.1002/mma.8548
http://dx.doi.org/10.1016/j.chom.2012.10.009
https://doi.org/10.1111/j.1600-065x.2008.00679.x
https://doi.org/10.1111/j.1600-065x.2008.00679.x
http://dx.doi.org/10.1093/cid/civ726
http://dx.doi.org/10.1007/s10699-019-09639-y
http://dx.doi.org/10.1007/s10699-019-09639-y
https://doi.org/10.1155/2021/8760937
https://doi.org/10.1007/s00500-020-05530-2
https://doi.org/10.1007/s00500-020-05530-2
https://doi.org/10.1093/femspd/ftaa001
https://doi.org/10.1093/femspd/ftaa001
http://dx.doi.org/10.1128/jcm.39.4.1571-1576.2001
http://dx.doi.org/10.1128/jcm.39.4.1571-1576.2001
https://doi.org/10.1038/s43588-022-00369-z
https://doi.org/10.1016/j.imlet.2007.07.007
https://doi.org/10.1016/j.imlet.2007.07.007
https://doi.org/10.1073/pnas.1913926116
https://doi.org/10.1073/pnas.1913926116
https://doi.org/https://doi.org/10.58560/rmmsb.v03.n02.023.06


13 of 13 PATHOGENESIS THROUGHOUT THE SYSTEMS Vivanco Castillo, E. et al.

Zhang, X., Ruan, Z., Zheng, M., Zhou, J., Boccaletti, S. and Barzel, B.
(2022) ‘Epidemic spreading under mutually independent intra- and
inter-host pathogen evolution’. Nature Communications, 13(1). doi:
10.1038/s41467-022-34027-9. Available at: https://doi.org/10.
1038/s41467-022-34027-9.

Recommended Citation: Vivanco Castillo, E. et al. ( 2023). ‘Patogénesis a través de los sistemas: un modelo de redes de reacción del proceso de infección
de Salmonella enterica’. Rev. model. mat. sist. biol. 3(2), e23R07, doi:https://doi.org/10.58560/rmmsb.v03.n02.023.06

This open access article is licensed under a Creative
Commons Attribution International (CC BY 4.0) http://creativecommons.org/licenses/by/4.0/.
Support:

doi: https://doi.org/10.58560/rmmsb.v03.n02.023.06

https://doi.org/10.1038/s41467-022-34027-9
https://doi.org/10.1038/s41467-022-34027-9
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/https://doi.org/10.58560/rmmsb.v03.n02.023.06


https://revistammsb.utem.cl | revista.mmsb@utem.cl

ISSN-L: 2735-6817 | ISSN (online): 2735-6817

Revista de Modelamiento Matemático de Sistemas Biológicos
Vol.3(2023), No.2, pp.1–11, e23R08

https://doi.org/https://doi.org/10.58560/rmmsb.v03.n02.023.09

Beyond R0: Exploring New Approaches

Más allá de R0: Explorando Nuevos Enfoques

Andrei González-Galeano1,3, Ignacio Barradas1,

José Geiser Villavicencio-Pulido2

B Andrei González-Galeano: andrei.gonzalez@cimat.mx

1 Centro de Investigación en Matemáticas,
Guanajuato, México

2 Universidad Autónoma Metropolitana, Unidad Lerma,
Estado de México

3 Universidad El Bosque,
Bogotá, Colombia

Recepción: 2023-09-14 | Aceptación: 2023-11-27 | Publicación: 2023-12-30

Recommended Citation: Andrei González-Galeano et al. ( 2023). ‘Más allá de R0: Explorando Nuevos Enfoques’. Rev. model. mat. sist. biol. 3(2),
e23R08, doi:https://doi.org/10.58560/rmmsb.v03.n02.023.09

This open access article is licensed under a Creative
Commons Attribution International (CC BY 4.0) http://creativecommons.org/licenses/by/4.0/.
Support: CONAHCYT through the program Beca CONACYT

https://utem.cl
https://revistammsb.utem.cl
mailto:revista.mmsb@utem.cl
https://revistammsb.utem.cl
https://doi.org/https://doi.org/10.58560/rmmsb.v03.n02.023.09
https://orcid.org/0009-0005-3447-7696
https://orcid.org/0000-0002-5973-9200
https://orcid.org/0000-0003-1085-8556
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


REVISTA DE MODELAMIENTO MATEMÁTICO DE SISTEMAS BIOLÓGICOS, Vol.3( 2023), No2, e23R08 2 of 11

ABSTRACT

The basic reproduction number, denoted as R0, is a crucial parameter in infectious disease modeling and serves as a key
element for designing control strategies.
Calculating R0 can be challenging in certain situations due to the complexity of the model. This complexity often hinders the
explicit computation of R0 and makes it difficult to understand how different populations and parameters influence its value.
Recent research has introduced the concept of the target reproduction number as an alternative to R0 (Shuai et al., 2013).
The target reproduction number demonstrates how it is possible to exert control over the entire system, by analyzing some
subsystems that describe the behavior of an infectious disease, it is possible to exert control over the entire system. The target
reproduction number offers a framework for making decisions in public health. In this study, we apply it to two models:
a model involving incomplete vaccination and a model for leptospirosis. The presented models showcase two fundamental
features of the target reproduction number. Firstly, its expression’s simplicity compared to the basic reproduction number.
Secondly, its behavior analogous to R0 at 1.

Keywords:

Target reproduction number, Failed vaccination model, Basic reproduction number, Mathematical Epidemiology.

RESUMEN

El número básico de reproducción, en la modelización de enfermedades infecciosas es un valor fundamental para diseñar
estrategias de control. Calcular el valor de R0 puede ser difícil en algunas situaciones debido a la complejidad del modelo.
Esta complejidad a menudo obstaculiza el cálculo explícito de R0 y dificulta la comprensión de cómo diferentes poblaciones
y parámetros influyen en su valor. Trabajos recientes han propuesto el número de reproducción objetivo como alternativa al
R0 (Shuai et al., 2013).
El número de reproducción objetivo muestra cómo, a través del análisis de algunos de los subsistemas que describen el
comportamiento de una enfermedad infecciosa, es posible ejercer control sobre todo el sistema. El número de reproducción
objetivo puede proporcionar un marco para la toma de decisiones en salud pública. En este trabajo lo aplicamos a dos
modelos: un modelo con vacunación incompleta y un modelo para la leptospirosis.
Los modelos presentados exhiben dos características fundamentales del número de reproducción objetivo. En primer lugar,
la simplicidad de su expresión en comparación con el número de reproducción básico. En segundo lugar, su comportamiento
análogo al R0 en 1.

Palabras Claves:

Número de reproducción objetivo, Modelo de vacunación imperfecta, Número de reproducción básico, Epidemiología
Matemática.
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1 INTRODUCTION

O n infectious disease modeling, the basic reproduction
number (R0) is crucial. It indicates the average

number of secondary infections generated by an infectious
individual in a fully susceptible population during its
infectious period. Calculating R0 is essential because it
provides vital information for assessing the likelihood of
an epidemic outbreak and understanding how diseases will
spread. Moreover, it aids in the development of effective
strategies to control and prevent infectious diseases (van
Den Driessche and Watmough, 2002). In mathematical
models involving multiple infectious compartments, com-
puting the basic reproduction number R0 can be challenging
(Saldaña and Barradas, 2018), as it involves intricate
parameter relationships resulting in complex expressions.
Even if an explicit expression for R0 is derived, identifying
which parameters impact its reduction most significantly is
not always straightforward. The expression’s complexity
often hampers direct analysis. The challenge of calculating
and modifying R0 has direct implications when designing
strategies for controlling and preventing infectious diseases.
Without a clear understanding of the factors that influence
R0 and how to intervene in them, devising effective measures
to contain disease spread becomes more difficult.

The aforementioned challenges highlight the necessity
on calculating a value that is easy to determine and enables
the design of control strategies in a clear manner. In this
way, the work presented by (Heesterbeek, 2007) introduces
the concept of target reproduction number. This approach
provides a significantly simpler expression in comparison to
the originally proposed basic reproduction number.

This perspective concentrates on implementing specific
strategies within a subsystem of the disease propagation
model, provided that the remaining subsystems are under
control. The objective is to exert control over the disease
spread.

The target reproduction number estimates the level of
effort required to eliminate an infectious disease when
control is applied to a specific subpopulation (Driessche,
2017).
An illustrative example could arise in the context of a
disease where diverse infection groups coexist, such as in
the case of leptospirosis, where infectious groups encompass
both animals and bacteria, with humans as the susceptible
classes. Assuming that certain transmission routes have been
controlled due to prior measures, for instance, transmission
between humans and bacteria through interventions like
water treatment, the focus might shift to controlling other
transmission routes, specifically infections between animals
and bacteria. The target reproduction number offers a tool
to regulate the subsystem related to the intended control
pathways. Consequently, it becomes feasible to achieve
control over the entire system, provided the other subsys-

tems associated with the remaining transmission routes have
already been managed.

A fundamental property of the target reproduction number
resides in its value being 1 when the basic reproduction
number is also equal to 1. This characteristic implies that
control strategies implemented to attain a value of 1 in
the target reproduction number will also place R0 at 1.
Depending on the model’s characteristics, for example, if the
model does not exhibit a backward bifurcation at R0 = 1, this
could lead to disease elimination through control strategies
as mentioned.
The target reproduction number is not unique, as it depends
on the population to which the control strategy is applied.
This implies that the value of the target reproduction number
can vary based on the considered population.

In practice, it is recognized that different control strategies
can lead to disease eradication. Therefore, it is necessary
to evaluate which strategy requires lower implementation
costs.
To illustrate the calculation of the target reproduction
number, in this work two examples are presented. The
first model, proposed in (Gandon et al., 2003), addresses a
scenario of failed vaccination where the infectious disease
can persist despite vaccination. This model is known as the
incomplete vaccination model.
On the other hand, the second model is about leptospirosis,
presented in (Baca et al., 2015). In this work an analysis is
conducted on a model representing leptospirosis, a disease
in which humans become infected through direct or indirect
contact with the urine of infected animals, wounds, or other
bodily fluids. In this work, numerical simulations will be
presented to illustrate the obtained results. These simula-
tions will illustrate how, by implementing control strategies
constructed based on the target reproduction number, the
infected curves tend towards zero as time increases. This
implies the eradication of the disease.

In this article, the emphasis lies on the significance of
the target reproduction number as an alternative to the basic
reproduction number, facilitating more detailed analyses
and employing simpler expressions. We refer to prior in-
vestigations conducted by (Roberts and Heesterbeek, 2003)
and (Driessche, 2017). This paper is structured as follows.
In Section 2 it is elaborated on the concept of the target
reproduction number, detailing the steps and calculations
required for its construction. In Section 3 it is shown two
specific examples in which target reproduction number is
employed to underscore its utility in concrete situations.
Additionally, this section includes simulations to verify the
effectiveness of the target reproduction number as a control
strategy. In the last section, the discussion is presented,
highlighting the main results obtained in the analyses, along
with the effectiveness of implementing the strategy based on
target reproduction number.

doi: https://doi.org/10.58560/rmmsb.v03.n02.023.09

https://doi.org/https://doi.org/10.58560/rmmsb.v03.n02.023.09


REVISTA DE MODELAMIENTO MATEMÁTICO DE SISTEMAS BIOLÓGICOS, Vol.3( 2023), No2, e23R08 4 of 11

2 CONSTRUCTION OF THE TARGET REPRO-
DUCTION NUMBER

In this section, the construction of the target reproduction
number will be performed using the methodology proposed
by (Roberts and Heesterbeek, 2003) and (Lewis et al., 2019).

In this analysis, the study addresses an infectious disease
that spreads among susceptible individuals using a system
of differential equations. Specifically, the existence of n
infectious compartments is considered. To understand and
analyze the disease spreading dynamics, we will start by
using the next-generation matrix, referred to as K = [ki j].
This matrix, as described in the study by (van Den Driessche
and Watmough, 2002), characterizes the interactions and
connections among the distinct infectious compartments,
playing a fundamental role in determining the target repro-
duction number.

Each element ki j in the matrix K represents the expected
number of secondary infections in the compartment i that
can be caused by an infected individual in the compartment
j, considering a fully susceptible population during their
infectious period. These matrix components reflect the
potential for disease the propagation among the different
compartments.

To explain the methodology, we will begin with the first
infectious compartment. That is in a fully susceptible pop-
ulation, the introduction of an infected individual belonging
to compartment 1 will be considered. Subsequently, the
matrix K will be used to calculate the expected number
of individuals in all infectious compartments in the next
generation of infection, due to an infectious individual from
the first compartment.

Considering the canonical vector e1 = (1,0, . . . ,0) of the
standard basis in Rn, we will compute Ke1. The i-th com-
ponent of this vector represents the expected number of new
infections in compartment i produced by an in individual
from compartment 1. Specifically, the first component of this
vector represents the expected number of new cases in the
infectious compartment 1 in the next generation of infection,
caused by an infectious individual from compartment 1.

To identify all new infections in compartment 1, it is nec-
essary to consider infections generated by individuals from
other compartments. To achieve this, the first position of the
vector (Ke1) is removed. This is accomplished through the
expression (I−P)(Ke1), where P = [pi j] is the projection
matrix defined by:{

pi j = 1 if i = j = 1,
pi j = 0 otherwise.

Subsequently, the matrix K is applied again to the resulting
vector (I − P)(Ke1), allowing us to obtain the expected

number of infected individuals from classes 2 to n that are
generated by an infectious individual from class 1 during the
second generation of infection.

In the third generation of infection, the vector
K (I−P)(Ke1) is calculated. The expected number of
infected individuals of type 1 is obtained using the expres-
sion PK (I−P)(Ke1).
On the other hand, the term (I−P)(K (I−P)(Ke1)) repre-
sents the expected number of infected individuals of types
2 to n. This term takes into account infections that occur
in intermediate generations of the infection without the
involvement of infectious individuals of type 1.
After j + 1 generations of infection, the value
eT

1 K ((I−P)K) j−1 e1 represents the expected number
of infected individuals of type 1 that arise during the
infection cycle without the intervention of an infectious in-
dividual from the same group in an intermediate generation.
Therefore, the value representing the number of secondarily
infected individuals of type 1 originating from an infected
individual of type 1 is:

Γ1 = eT
1 K

∞

∑
j=0

((I−P)K) j . (1)

The spectral radius of the matrix (I − P)K is denoted as
ρ (I−P)K. If ρ((I−P)K) < 1, then the sum, given in (1),
converges to:

Γ1 = eT
1 K (I− (I−P)K)−1 e1. (2)

In the realm of numerous infectious diseases, different
groups of infected individuals are often encountered. Previ-
ously, the focus was solely on counting the expected number
of infected individuals from the first group. However, it is
now possible to generalize this concept by considering the
existence of l classes of infected individuals, where l can be
less than or equal to n. The following definition is provided:

Definition 1 The target reproduction number Γl is defined
as the spectral radius of the l× l matrix Ml , given by:

Ml = ET
l K (I− (I−Pl)K)−1 El . (3)

With El and Pl are matrices of size n× l and n× n respec-
tively, defined as:{

(Pl)ii = (El)ii = 1 if i = 1, ...l,
(Pl)i j = (El)i j = 0 otherwise.

From this point onward, we will employ the matrices:
D = PlK and B = (I−Pl)K, which were used in the equation
given in (3). Note that D+B = K.

A related method regarding the matrices D and B, as pro-
posed by (Driessche, 2017), is presented in the next. Suppose
that a control strategy is to be applied and the parameters de-
scribing the infection behavior in the next-generation matrix
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K are modified. Let S be the set of entries in K that will be
modified by the control strategy τ . Additionally, let l be the
classes of infectives from which Γl was constructed. In this
context, the matrix Pl = [pi j] is:{

pii = 1 if i = 1, ...l,
pi j = 0 otherwise.

The matrix D = [di j] will be referred to as the target ma-
trix. It contains the entries that will be modified in the ma-
trix K through the control strategy τ . On the other hand,
B = [bi j] = (I−Pl)K contains the entries of K that will not
be modified. To ensure an effective control strategy over the
terms of the matrix K that will not be modified, it is required
that the spectral radius of the matrix B = (I−Pl)K, denoted
as ρ(B) = ρ((I−Pl)K), be less than 1, as established in (1).
This ensures that the non-modified terms do not significantly
contribute to the disease’s spread. The target reproductive
number can be defined based on the aforementioned matri-
ces B and D as follows (Driessche, 2017):

Γl = ρ
(
D(I−B)−1) . (4)

With ρ
(
D(I−B)−1

)
being the spectral radius of the matrix

D(I − B)−1, and I being the identity matrix of size n× n.
Associated with the target reproduction number, the control
matrix is constructed as defined below.

Definition 2 (Control Matrix) The control matrix associ-
ated with the target matrix D is defined as KC(τ) = B+ D

τ
.

τ represents a control applied to the matrix D, which in turn
represents the implementation of a control policy within the
population.

According to the above definition, the components di j of
the matrix D are transformed to di j

τ
. The following theorem

describes some characteristics of the target reproduction
number as a threshold parameter, as well as its effectiveness
as a control policy. The complete proofs of these theorems
can be found in (Driessche, 2017).

In this section, we make use of the definition of a non-
negative matrix, where all its entries are greater than or equal
to zero. Additionally, we consider an irreducible matrix,
characterized by the property that all its elements can be re-
lated to one another, either directly or indirectly, through a
finite number of steps. This implies that there are no iso-
lated submatrices where there is no connection between rows
and columns. The main characteristic of the target reproduc-
tion number is manifested through the following theorem,
which explicitly establishes the relationship between the con-
trol strategy τ applied to the population and the reproduction
objective number. Γl , defined in equation (4).

Theorem 1 Let K, B, D be non-negative n×n matrices with
K = B + D is irreducible, D 6= 0, and ρ(B) < 1. Then,
ρ(KC(τ)) = 1 if and only if τ = Γl .

The following theorem demonstrates that the target repro-
duction numbers associated with different control strategies
share similar characteristics, as they are threshold parame-
ters at 1. Additionally, they offer the advantage of having
much simpler expressions compared to the basic reproduc-
tion number, R0.

Theorem 2 Let K, B, and D be non-negative irreducible ma-
trices with K = B+D, D 6= 0, and ρ(B) < 1. Then, the fol-
lowing propositions hold:

i) ρ(K)< 1 if and only if ΓD < 1.

ii) ρ(K) = 1 if and only if ΓD = 1.

iii) ρ(K)> 1 if and only if ΓD > 1.

This theorem establishes a relationship between the target re-
productive numbers and their behavior around the threshold
value of 1.

Theorem 3 Let K, B, B′, D, and D′ be non-negative ma-
trices, with K = B+D = B′+D′, and all of them are irre-
ducible. D 6= 0, D′ 6= 0, ρ(B)< 1, and ρ(B′)< 1. If D′ < D,
then one and only one of the following propositions holds:

i) 1 < ΓD < ΓD′ .

ii) 1 = ΓD = ΓD′ .

iii) ΓD′ < ΓD < 1.

3 THE TARGET REPRODUCTIVE NUMBERS

In this section, we will apply the methodology proposed
in (Shuai et al., 2013) to calculate the target reproductive
numbers for different epidemiological models in order to
demonstrate the advantages of this technique.

Example 1. In this example, we examine the model pro-
posed in (Gandon et al., 2003). The model describes the dy-
namics of an infectious disease when a vaccination strategy
is being implemented in the susceptible population. In this
model, it is assumed that the vaccine is imperfect. The model
is presented below:

S′ = Λ(1− p)−µS− (βuuI +βvvIv)S,

S′v =−pΛ−µSv− (βuvI +βvuIv)Sv,

I′ = (βuuI +βvvIv)S− (µ +ν)I,

I′v = (βuvI +βvuIv)Sv− (µ +νv)Iv.

(5)

In the design of control strategies, it is useful to have a
tool that allows me to determine whether an epidemic out-
break will occur. In the introduction of this paper, it is men-
tioned that the basic reproductive number is the commonly
used epidemiological threshold parameter to determine in-
fectious dynamics at the onset of the disease.
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The next-generation matrix for model (5) is shown below.

K =


βuuS∗0
µ +ν

βuvS∗0
µ +νv

βvuS∗0v
µ +ν

βvvS∗0v
µ +νv

 , (6)

When calculating the spectral radius of matrix K with
E0 = (S0,S0v,0,0) =

(
Λ(1−p)

µ
, pΛ

µ
,0,0

)
, the basic reproduc-

tive number associated with the model given in (5) is:

R0 =
1
2

(
βuuS∗o
(v+µ)

+
βvvS∗ov
(vv +µ)

+√(
βuuS∗o
(v+µ)

+
βvvS∗ov
(vv +µ)

)2
−4
(

βuuS∗0βvvS∗ov−βuvβvuS∗ovS∗ou

(v+µ)(vv +µ)

) .

(7)

Consequently, the disease-free equilibrium E0 is locally
asymptotically stable if and only if R0 < 1. Therefore, a
control strategy involves adjusting one or more parameters
of the model in such a way that the value of R0 decreases
below 1.
Note that the effects on R0 when applying a control strategy
to reduce the transmission rate among the non-vaccinated
population βuu are not clear. The same ambiguity applies
to the other effective contact rates βvv, βvu, and βuv. Let us
consider a control strategy aimed at decreasing the spread of
infections among the non-vaccinated individuals, assuming
that transmissions among vaccinated individuals are under
control.

This strategy can be implemented by reducing mobility
among the non-vaccinated individuals. Next, we proceed to
calculate the value of target reproductive number associated
with this strategy, as per the definition established in equa-
tion (4). However, before performing this calculation, it is
necessary to obtain the matrix D(I−B)−1.

The expression that defines D(I−B)−1 is as follows:


βuuS∗o
(v+µ) (1−

βvvS∗ov
(vv+µ) )

1− βvvS∗ov
(vv+µ) −

βuvS∗o
(vv+µ)

βvuS∗ov
(v+µ)

βuuS∗o
(v+µ)

βvvS∗ov
(vv+µ)

1− βvvS∗ov
(vv+µ) −

βuvS∗o
(vv+µ)

βvuS∗ov
(v+µ)

0 0

 .
(8)

Let the set of indices S = {(i, j) | 0 ≤ i, j ≤ n} correspond
to the entries of the matrix K given in (6). According to the
definition established in (4), the target reproduction number
Γl for (5), associated with the index set S = {(1,1)}, is given
by the following expression:

Γl =

βuuS∗o
(v+µ) (1−

βvvS∗ov
(vv+µ) )

1− βvvS∗ov
(vv+µ) −

βuvS∗o
(vv+µ)

βvuS∗ov
(v+µ)

. (9)

It is essential to highlight the simplicity of the target
reproduction number as defined in equation (9), compared
to the basic reproduction number established in equation
(7). Although the expression for the target reproduction
number is much simpler, its value equals is 1 when the basic
reproduction number R0 is also equal to 1. However, another
important aspect is to consider its effectiveness in guiding
the control of disease spread. This happens once a specific
control strategy that modifies transmission rates has been
implemented.

To demonstrate the effectiveness of the target reproduc-
tion number, numerical simulations will be conducted. The
expression given in (1) asserts that by applying a control
strategy to the parameters related to disease transmission in
the entries of the next-generation matrix K and adjusting
these parameters through the control strategy to make τ

equal to the target reproduction number, the new basic
reproduction number associated with the control matrix
KC(τ) will be equal to 1.This condition, in turn, ensures that
the solution curves of system (5) approach to zero as time
approaches to infinity, provided initial conditions are near
the equilibrium point. Additionally, it is essential that system
(5) has no endemic points in order to develop the strategy
associated with the target reproduction number, the follow-
ing set of parameters is considered: θ = (βuu,βvv,βuv,βvu)
that are related to the target reproduction number Γl defined
in equation (9). The implementation of the control strategy
involves dividing certain parameters associated with the
next-generation matrix of the model by the value of the
target reproduction number. In practice, this represents
the minimum value to which infections must be reduced
to ensure the epidemic’s extinction (Saldaña and Barradas,
2018).

Contemplating controlling transmission within the unvac-
cinated population, entailing an adjustment to the parameter
βuu. Contemplating controlling transmission within the
unvaccinated population, entailing an adjustment to the
parameter βuu will be made. This modification is defined by
the new value β uu, which is calculated as βuu∗ = βuu

Γl
. The

following graphs show the temporal evolution of the curves
of infected individuals before and after the implementation
of the control strategy through parameter modification.
These graphs illustrate the curves of infected individuals
both before and after the parameter modification.

Figure (1) shows the impact on the spread of the epidemic
in the unvaccinated population. It can be observed that as
control is implemented, the curve showing the evolution of
the infected population tends to zero as time approaches to
infinity. This result is explained by the expression given
in (1), which states that the control measure is effective if
the transmission rate is reduced in accordance with the val-
ues specified by the target reproduction number (Saldaña and
Barradas, 2018). According to the theorem presented in (3),
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Figure 1: The graph depicts the prevalence of the infection in the
non-vaccinated population over time, represented by a continuous
curve in the absence of control and a dashed curve in the presence

of control.
The parameter values used are: βuu = 0.0002, βvv = 0.00009,
βuv = 0.000009, βvu = 0.000003, v = 0.0001, vv = 0.00011,

p = 1
5 , µ = 1

365×20 , Λ = 3×µ

.

when considering a different index set for the matrix K, the
associated target reproductive number for that index set ex-
hibits the same behavior around 1 as any other reproductive
number associated with a different strategy.
In this context, let us consider the index set S = {(2,2)}.
This index set is related to a new control strategy linked to
the vaccinated population. Imagine a scenario where the epi-
demic spread in the non-vaccinated population is already un-
der control, possibly due to the isolation of this population.
However, the vaccinated population is allowed to circulate
freely. Despite this situation, there still exists a possibility
of transmission within this vaccinated group. Now, let us
proceed to calculate the target reproductive number ΓD′ for
infections generated by a vaccinated individual in the vacci-
nated susceptible population. We follow a similar process as
shown the previous steps for the model given in (5) with the
values provided in (7), and with the matrix D = [di j] with:{

di j = ki j if i = j = 2,
di j = 0 otherwise.

If ρ(B)< 1, the objective reproductive number ΓD′ exists and
is given by:

ΓD′ =

βvvS∗ov
(vvµ) (1−

βuuS∗o
(v+µ) )

1− βuuS∗o
(v+µ) −

βuvS∗o
(vv+µ)

βvuS∗ov
(v+µ)

. (10)

The target reproductive number ΓD′ represents the average
number of vaccinated individuals infected by another
vaccinated individual in a population that is completely
susceptible to the disease. The infection can spread from one
vaccinated individual to another or through unvaccinated
individuals.

In this context, the goal is to put in place a control strategy
to reduce the spread of the epidemic among the vaccinated

Figure 2: The graph depicts the prevalence of the disease infection
in the vaccinated and unvaccinated populations over time,

represented by continuous curves in the absence of control and
dashed curves in the presence of control. The parameter values

used are: βuu = 0.00000002, βvv = 0.9, βuv = 0.000009,
βvu = 0.000003, v = 0.001, vv = 0.0001, p = 1

5 , µ = 1
36520 ,

Λ = 3µ

.

population, assuming that the epidemic is already under
control among the unvaccinated population. To achieve this,
a set of parameters θ = (βuu,βvv,βuv,βvu) related to the
target reproductive number ΓD′ defined in (4) is taken into
consideration.

Firstly, a study was conducted on the effect of vac-
cination on the disease spread. For this purpose, the
dynamics of the epidemic in the absence of control mea-
sures on the population were analyzed, and the parameters
θ = (βuu,βvv,βuv,βvu) corresponding to the initial situation
were obtained. Subsequently, a numerical simulation of the
epidemiological model was performed using the parameters
θ , in order to obtain the prevalence curves of the disease
both in the vaccinated and unvaccinated populations.

Once these curves were obtained, the control strat-
egy was implemented by adjusting the parameters
θ0 = (βuu,β

∗
vv,βuv,βvu), where β ∗vv = βvv

ΓD′
, with the aim

of reducing the reproductive number of the disease. In
practice, this could be achieved by implementing specific
control measures, such as reducing the mobility of the
vaccinated population, among other strategies.

Figures 1 and 2 show how, by applying control strategies
based on target reproductive numbers, the curves represent-
ing the behavior of the infected individuals experience a
significant decrease. This implies that, in the context of the
model, the disease tends to disappear.

Example 2. The following example, presented in (Baca
et al., 2015), deals with human infection caused by bacte-
ria from the environment or contact with infected animals.
The mathematical model describes how an epidemic spreads,
with contact with infected animals and environmental bacte-
ria being the main sources of new infections in both animals
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and humans. Below is the detailed model:

S′A =−(C1IA +C2B)SA +βNA−α2SA,

I′A = (C1IA +C2B)SA−α2IA,

S′H =−(C3IA +C4B)SH +α1IH ,

I′H = (C3IA +C4B)SH −α1IH ,

B′ =C5IA +C6IH − kB.

(11)

By setting the direction field given in (11) equal to zero,
an infection-free equilibrium is obtained with the following
components:

X0 = (SA0,SH0, IA0, IH0,B) =
(

Nβ

α2
,NH ,0,0,0

)
. (12)

The next-generation matrix K associated with the model de-
scribed in (11) is displayed.

K =


C1NA

β
0

C2NA

K
C3NH

β
0

C4NH

K
C5

β

C6

α1
0

 . (13)

The characteristic polynomial of (13) is defined as follows:

P(λ ) =−λ
3 +R1λ

2 +
(
R2

4 +R2
6
)

λ +R3−R1R2
4. (14)

The equation (18) define the values of R1, R4, R6, and R in
terms of the parameters C1, C2, C4, and C5. NA and NH rep-
resent the total populations of animals and humans, respec-
tively.

R1 = c1NAβ . (15)

R4 =

√
C4C6NH

α1k
. (16)

R6 =

√
C2C5NA

βk
. (17)

R̄ = 3

√
C2C3C6NANH

α1βk
. (18)

The basic reproduction number R0 associated with model
(11) is defined as follows:

R0 =
1
3

R1 + z
1
3 +
|z| 23

z
1
3
. (19)

With

z =
R̄3

2
+

R3
1

3
+

R1R2
6

6
− R1R2

4
3

+√
R̄6

4
+

R1R2
6R̄3

6
+

R3
1R̄3

27
+

2R2
1R2

4
27

−
R4

1R2
4

27

−
5R2

1R2
4R2

6
27

−
R2

1R4
6

108
− R2

1R2
4R̄3

3
−
(

R2
4 +R2

6
27

)3

.

(20)

In the current scenario, we consider a situation where the
control of transmission between humans and animals, as well
as between humans and bacteria, is already controlled, pos-
sibly through control campaigns. Now, the focus is on main-
taining control both between animals and between animals
and bacteria, possibly through hygienic measures involving
animal food consumption. With this consideration, we will
proceed to calculate the value of the reproduction number
associated with this control strategy. It is important to high-
light that identifying which parameters are most sensitive be-
comes significantly more challenging when examining the
entire system, due to the complexity of the expressions in-
volved, as shown in the equation given in (20). However, by
focusing the analysis on the subsystem related to a specific
strategy, this task simplifies, especially if the other subsys-
tems are already under control. Using the previous definition
given in (4), the matrix B is defined as:

B =


0 0 0

C3NH

β
0

C4NH

k
C5

β

C6

α1
0

.

According to the definition given in equation (4), the target
reproduction number Γl , for (11), associated with the index
set S = {(1,1), (1,2)}, is given by the following expression:

ρ(D(I−B)−1) =
(C1k+C2C5)NAα1 +(C2C3−C1C4)C6)NANH

(kα1−C4C6NH)β
.

(21)
It is important to highlight the simplicity of the target re-
production number in comparison to R0 given by (20). This
expression remains valid whenever the condition ρ(B)< 1 is
satisfied, which is equivalent to:√

C4C6NH

kα1
< 1.

Next, numerical simulations will be permormed. These
simulations will be carried out before applying the control
strategy and after applying the control strategy using the
target reproduction number. Given the target reproduction
number Γl , as defined in equation (21), the set of parameters
θ = (C1,C2,C3,C4,C5,C6) is taken into consideration. The
strategy involves controlling the transmission rates between
animals and bacteria, which leads to the modification of
the parameters C1 and C2. New parameters are derived
from the value of target reproduction number using the
following expressions for C1 and C2, denoted as C∗1 =

C1
Γl

and

C∗2 = C2
Γl

. In Figure presented show the temporal evolution
of the infected individuals, including the curves of infected
individuals before and after of the parameter modification.

Figure 3 illustrates how the application of combined
control strategies, based on target reproduction number,
manages to reduce infections in both animals and humans.
The curves representing the behavior of infected individu-
als tend to zero, indicating that the disease tends to disappear.
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Figure 3: The graph displays the prevalence of infection by the
disease in the population over time, represented by continuous

curves in the absence of control and dashed curves in the presence
of control. The simulation uses the following parameter values:

β = 1
3560 , C1 = 5×10−3, C2 = 5×10−3, C3 = 65×10−2,

C4 = 6×10−2, C5 = 2×10−2, C6 = 2.15×10−6, α1 =
1

20 ,
α2 =

1
500 , and k = 1

18 .

It is noteworthy how it is possible to exert control over the
entire system by regulating the subsystem related to trans-
mission between animals and bacteria. This objective is valid
as long as the subsystems associated with transmission path-
ways involving humans are under control. Clearly, this sub-
system has a considerably simpler mathematical formulation
for analysis compared to the complexity of the entire system.
The simplicity in its formulation represents greater efficiency
when designing control strategies.

4 DISCUSSION

Calculating the basic reproduction number in situations
involving complex interactions among multiple infectious
compartments poses significant challenges. The diverse
interactions among these compartments, represented by
different rates, complicate the derivation of simple formulas
for computing R0. This, in turn, hinders the identification of
strategies for controlling the spread of an infectious disease.

In response to this complexity, the concept of the target
reproduction number is suggested as a simpler alternative
to the original R0. This strategy focuses on analyzing
subsystems related to transmission pathways within an
infectious disease system. It shows that by controlling these
subsystems, overall system control can be achieved. The
target reproduction number facilitates the formulation of
more specific control strategies.
By directing efforts towards a subgroup of the population,
the target reproduction number provides a tool to control the
outbreak of an infectious disease. The target reproduction
number offers a clearer understanding of how changes
in one part of the system can influence disease spread,
thereby enabling more informed decision-making in the
implementation of preventive measures.

It is important to highlight that the target reproduction
number is supported by results that ensure a similar behavior

to R0 when its value is equal to 1. These results underscore
a fundamental aspect: regardless of the strategy used to
calculate the target reproduction number, when one of them
reaches a value of 1, the others also become 1. Therefore,
this property enables the evaluation of various control
strategies and their effectiveness. The choice of which
strategy to apply should be based on minimizing costs when
implementing a control strategy.

To illustrate the applicability of the target reproduction
number, two specific models have been used. In the first
model, the scenario of incomplete vaccination is addressed,
where the infectious disease can persist despite vaccination.
In this model, two types of strategies are modeled: the
first strategy is linked to controlling the non-vaccinated
population. The effectiveness of this control strategy
depends on controlling the other subsystem represented by
the vaccinated population. Conversely, a control strategy
is developed associated with the vaccinated population,
assuming control over the non-vaccinated population. The
effectiveness of both strategies occurs because changes in
the rate values, which are adjusted by the target reproduction
number, allow it to reach the threshold of 1. This implies that
the respective basic reproduction number for the adjusted
system is equal to 1.

Through a detailed calculation of the target reproduc-
tion number and the performance of simulations, the
effectiveness of this approach as a control strategy in the
proposed scenario has been shown. The choice of the most
suitable strategy is based on the costs required to control
the regulated subsystem. In the second model, an analysis
of leptospirosis, a disease with infectious agents including
animals and bacteria in the environment, is carried out.
A control strategy is proposed that addresses infections
between animals and bacteria, assuming transmission to
humans is under control. The target reproduction number
related to this control strategy is significantly simpler than
R0. The target reproduction number presents itself as an
alternative for developing control strategies to contain
an epidemic outbreak. It is important to emphasize that
by solely controlling the subsystem related to infections
between animals and bacteria, it is possible to exert control
over the entire system that includes all transmission path-
ways.

The simulations carried out in the examples have sup-
ported the effectiveness of the target reproduction number as
a control strategy. In each of the examples, it is illustrated
how the curves of infected individuals undergo changes
before and after applying the strategy based on the target
reproduction number. It is clear that after implementing
this strategy, the curve decreases significantly. This contrast
highlights the utility of this approach as a control strategy.

A consequence that can be inferred from applying the
target reproduction number to the model of incomplete
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vaccination is that when implementing different control
strategies based on the target reproduction number, first
in the unvaccinated population and then in the vaccinated
population, these strategies efficiently achieve disease
eradication as time approaches infinity.
An observation that can be made from the analysis of
second model is that, despite the simplicity of the target
reproduction number, using it as a control strategy on a
subpopulation also leads to disease elimination as time tends
to infinity.

In conclusion, the target reproduction number provides
a valuable alternative to the traditional calculation of R0 in
situations involving complex interactions among multiple
infectious classes. Its simplicity make this approach a
promising tool for addressing the spread of infectious
diseases and designing more effective interventions. By
focusing on a specific population group, the target repro-
duction number allows for a more precise assessment of
intervention effectiveness and facilitates informed decision-
making regarding prevention and control strategies.

A pathway for future research could involve determining
the target reproduction number in models of multiple cities,
thus enabling a comparison between the target reproduction
number approach for the entire multi-city model and the pro-
posed numbers for each individual city.
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ABSTRACT

The impact of human actions on the environment poses several challenges at the global level, with solutions that deserve
the productive and political sectors and civil society to be jointly involved. Resource scarcity, ecosystem degradation, and
climate change must be addressed urgently; this is a paradigm change in the forms of production and consumption. This is a
transition from a linear economy to a circular economy, which allows responsible disposal and reuse of waste along the links
of production and use. However, despite notable advances in recycling and upcycling, landfill and dump disposal remain the
primary waste disposal worldwide. Furthermore, a significant amount of waste is disposed of illegally, affecting the quality
of life of communities that live in nearby areas. This work studies the trade-off between waste container removal and illegal
micro-dumps cleaning using impulsive control. A type of strategic mathematical model is formulated, one that captures the
minimal but relevant aspects of the phenomenon, to describe the dynamics of garbage.

Keywords:

Circular economy, Waste containers, Illegal dump, Impulsive control, Security factor.

RESUMEN

El impacto de las acciones humanas sobre el medio ambiente plantea varios desafíos a nivel global con soluciones que
merecen la participación conjunta de los sectores productivos, políticos y de la sociedad civil. La escasez de recursos,
la degradación de los ecosistemas y el cambio climático deben ser abordados con urgencia, siendo necesario un cambio
de paradigma en las formas de producción y consumo. Sin embargo, a pesar de los notables avances en el reciclaje y
el suprareciclaje, los rellenso sanitarios y vertederos siguen siendo la principal forma de eliminación de residuos en todo
el mundo. Es más, una cantidad importante de residuos se elimina de manera ilegal afectando la calidad de vida de las
comunidades que viven en zonas cercanas. Este trabajo estudia la compensación entre el retiro de contenedores de residuos y
la limpieza de micro-vertederos ilegales mediante el control impulsivo. Se formula un modelo matemático de tipo estratégico,
aquel que capta aspectos mínimos pero relevantes del fenómeno, para describir la dinámica de la basura.

Palabras Claves:

Economía circular, Contenedores de residuos, Vertederos ilegales, Control impulsivo, Factor de seguridad.
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1 INTRODUCCIÓN

W aste is generated by human action and as a subprod-
uct of satisfying consumer and production needs.

This fact is structured by the linear economy, a model that
is defined from the chain: take, make, use, and destroy
(Ghisellini et al., 2016). Indeed, the quantity of municipal
solid waste (MSW) is increasing worldwide as human
societies move toward an urban future. Recent estimates
suggested that 1.3 billion tonnes of MSW are generated
each year; however, this quantity is projected to increase
to around 2.2 billion in 2025 (Hoornweg and Bhada-Tata,
2012). As in most countries, in Chile waste is disposed
of in legal and illegal dumps, corresponding to 69.4%
and 30.6%, respectively (Ministerio de Medio Ambiente,
2022). Although these final disposal places are far from
the central area of the city, they represent a sociosanitary
problem for the populations living in adjacent areas, such
as rural and urban communities. Indeed, residents living
close to waste disposal places are typically affected by
contamination of water and ground, jointly with bad smells,
visual displeasure, and the potential propagation of diseases
and plagues (Cárdenas et al., 2016; Ossio and Faúndez,
2021; Escobar, 2021). Eradicating this vulnerability is the
long-term seventh goal of Chile’s transition to the circular
economy 2040, termed “Recovery of sites affected by illegal
waste disposal” (Ministerio de Medio Ambiente, 2021), for
this reason, it is important to understand the dynamics of
waste disposal and removal to detect critical control points
and optimize the local resources for its management.

To achieve this important paradigm change, a challenge
of the utmost urgency at the global level, it is necessary
to work together with the productive and political sectors
and civil society (Govindan and Hasanagic, 2018; Ossio
et al., 2020; Ministerio de Medio Ambiente, 2021) to avoid
the several negative effects that waste disposal generates
on the environmental, social and economic dimensions.
In this regard, four axes have been outlined to achieve
the desired transformation: Circular Innovation, Circular
Culture, Circular Regulation, and Circular Territories in
relation to each dimension and their interrelation through the
government and/or municipal council directions (Ministerio
de Medio Ambiente, 2021).

Since it is a transversal problem, illegal disposal of waste
aggravates environmental, social, and economic impacts.
For example, Vergara and Tchobanoglous (2012) showed
that, relative to the areas surrounding dumping sites, stream
ecology, flora and fauna, habitat depletion, and land use
change dominated the concerns of the stakeholders. This
contingency is not unfamiliar among Chilean communi-
ties; indeed, according to Ossio and Faúndez (2021), in
Chile, there are 3.735 illegal sites of final waste disposal
formed by 3.492 dumps and 243 micro-dumps, distributed
throughout the country; however, these are concentrated
in the Región Metropolitana which generates the largest

amount of waste (Ministerio de Medio Ambiente, 2022;
Vivanco Font, 2023). Several strategies have been proposed
to recover sites affected by illegal waste disposal, such as
zero waste industries, educating the civil society to promote
recycling/upcycling behaviors, and strengthening control to
avoid illegal waste disposal (Ministerio de Medio Ambiente,
2021).

In this work, a strategic mathematical model (Jiliberto,
2020) is formulated to describe the dynamics of waste that is
deposited both in legal waste containers and littering in clan-
destine or illegal micro-dumps. Assuming that waste con-
tainer removal and illegal micro-dump cleaning are carried
out simultaneously and regularly, a trade-off occurs. In addi-
tion, depending on the rate at which wastes are littered, the
waste containers can collapse, and thus the waste in the ille-
gal micro-dumps increases and maintains. This situation is
modeled from the level of filling waste containers, a fraction
between availability and occupied capacity.

2 MATHEMATICAL MODELING

Let be G = G(t) the total waste at time t ≥ 0. Assuming
that the waste is deposited by individuals on the municipal
council waste containers or sites such as hillsides and rural
roads on the periphery of the city giving rise to micro-dumps,
their amounts are represented respectively by G⊕ = G⊕(t)
and G	 = G	(t). Then, G = G⊕ + G	. In addition, the
total capacity of municipal council waste containers is given
by the density of these, represented as N = N(t), and their
specific capacity c. Therefore, when G⊕ = cN is obtained,
the municipal council waste containers are filled. However,
since this notion can be subjective, the occupancy fraction
γ ∈ (0,1) equivalent to G⊕/cN is proposed. Consequently,
when the municipal council waste containers have avail-
ability, being fulfilled G⊕ < γcN, then these are occupied
at a rate proportional to available capacity: r(1−G⊕/cN).
Conversely, when G⊕ ≥ γcN is obtained, the inflow waste
that cannot be deposited due to lack of space is dumped,
in addition to rate r	, in peripheral sites, and then, forms
the illegal micro-dumps. In turn, considering a population
increase or constant container theft at a rate µ , the density of
municipal waste containers decreases. This waste dynamics’
occurs each τ > 0 unit of time, in concordance with the
municipal council waste container removal by the cleaning
and maintenance department. At these moments, a fraction
λ = 1− e−µτ of stolen waste containers are replenished,
jointly with the cleaning of illegal micro-dumps and the
container waste removal in a trade-off fractions δ ∈ (0,1)
and 1− δ , respectively. In fact, municipal council waste
containers are removed and their capacity is restored to cN
when δ = 1. However, the illegal micro-dumps were not
cleaned. Conversely, when δ = 0, the illegal micro-dumps
were cleaned but the waste containers were not removed,
which promotes the emergence of illegal micro-dumps. Con-
sequently, a trade-off is obtained between these clean spaces.
Therefore, the following mathematical model is proposed:
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N′(t) = −µN(t)

G′⊕(t) = r⊕

(
1− G⊕(t)

cN(t)

)

G′	(t) =

 r	 , if G⊕(t)< γcN(t)

r	+ r⊕
G⊕(t)
cN(t)

, if G⊕(t)≥ γcN(t)


t 6= kτ

N(t+) = N(t)+(1− e−µτ)(N∗−N(t))

G⊕(t+) = (1−δ )G⊕(t)

G	(t+) = δG	(t)

 t = kτ

(1)

with N(0) = N∗, G	(0) > 0, and G⊕(0) > 0. Importantly,
if µ = 0 then N(t) = N∗ for any t ≥ 0.

3 RESULTS

The mathematical study of the model (1), described by a sys-
tem of impulsive differential equations, investigates the long-
term patterns of waste dynamics and focuses on the relation-
ship between the instant at which the waste containers are
filled and when they are removed, and jointly when the illegal
micro-dumps are cleaned. The synchrony between activities
plays a key role in the illegal micro-dumps’ non-persistence.

THRESHOLD CONDITION AND TEMPORAL DYNAMICS

Let be {tk} an increasing and non-bounded sequence such
that tk+1 = tk+τ , which is related to the removal of the waste
containers and cleaning the illegal micro-dumps. Then, solv-
ing the model (1) for t ∈ (tk, tk+1], follows that

N(t) = N(t+k )e−µ(t−tk).

Taking t = tk+1, the stroboscopic map

N(tk+1) = [N(tk)+(1− e−µτ)(N∗−N(tk))]e−µτ

is obtained, whose equilibrium point is given by

N =
λ

eµτ −1+λ
N∗,

where λ = 1− e−µτ . Consequently,

G′⊕(t)+
r⊕

cN(t+k )e−µ(t−tk)
G⊕(t) = r⊕,

has by solution

G⊕(t)= exp

{
− r⊕(eµ(t−tk)−1)

cN(t+k )µ

}(
G⊕(t+k )+

∫ t

tk
r⊕E(s)ds

)
,

where

E(s) = exp

{
r⊕(eµ(s−tk)−1)

cN(t+k )µ

}
for any t ∈ (tk, tk+1]. Taking t = tk+1, we have the strobo-
scopic map

G⊕(tk+1) = (1−δ )exp
{
− r⊕(eµτ −1)

cN(t+k )µ

}
G⊕(tk)+

+exp
{
− r⊕(eµτ −1)

cN(t+k )µ

}∫ tk+1

tk
r⊕ exp

{
r⊕(eµ(s−tk)−1)

cN(t+k )µ

}
ds︸ ︷︷ ︸

I

,

whose equilibrium point is given by

G⊕ =

r⊕ exp
{
− r⊕(1− e−µτ)

cNµ

}
1− (1−δ )exp

{
− r⊕(1− e−µτ)

cNµ

} ·L ,

where L exist due to 0 < I ≤ r⊕τ .
Taking eµ(t−tk) > µ(t−tk)+1 for any t ∈ (tk, tk+1], follows

that

E(t)> exp
{

r⊕(t− tk)
cN(t+k )

}
,

and then

L ≥ lim
k→∞

cN(t+k )

r⊕

(
exp
{

r⊕τ

cN(t+k )

}
−1
)
,

=
cNeµτ

r⊕

(
exp
{

r⊕τ

cNeµτ

}
−1
)

(2)

is obtained. Figure 1 illustrates the temporal dynamics of
model (1) for N(t) and G⊕(t) states and the respective stro-
boscopic maps according to impulsive dynamics.

Figure 2 shows that dG⊕/dµ < 0, and thus G⊕ tends to

G⊕∗ =
cN∗

(
1− exp

{
− r⊕τ

cN∗

})
1− (1−δ )exp

{
− r⊕τ

cN∗

} (3)
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(a) (b)

Figure 1: Temporal dynamics of model (1). (a) The waste containers density, N = N(t), and (b) the amount of waste in containers,
G⊕ = G⊕(t) for t ∈ [0,150] and initial conditions N(0) = 30, G⊕(0) = 20. The common parameter values are τ = 30, µ = 0.04, c = 2,

δ = 0.17, γ = 0.95, r	 = 0.01, r⊕ = 1, and N∗ = 30. Importantly, the dashed line represents the top-fill level, G⊕ := γcN∗ = 19.

Figure 2: Equilibrium values of the stroboscopic maps
G⊕(tk+1) = F(G⊕(tk),N(tk)) (red dots) and

G⊕(t+k+1) = δG⊕(tk+1) (blue dots) as µ increases, using τ = 30,
c = 2, δ = 0.17, γ = 0.95, r	 = 0.01, r⊕ = 1, and N∗ = 30 as

parameter values, and initial conditions N(0) = 30, G⊕(0) = 20.

as µ tends to zero, and thus necessarily, L tends to
cN∗(exp{r⊕τ/(cN∗)}−1)/r⊕ according to (2).

On the other hand, let be {sk} a sequence such that
G⊕(sk) = γcN∗, which is related to the waste containers are
filled. Therefore, integrating the model (1) on (sk,sk+1] we

have

G⊕(sk+1) = cN∗+[cN∗−G⊕(s+k )]exp
{
− r⊕(sk+1− sk)

cN∗

}
.

Assuming that G⊕(s+k ) = 0, this is, the waste containers are
removals, follows that

γcN∗ = cN∗

(
1− exp

{
− r⊕(sk+1− sk)

cN∗

})
and thus,

sk+1 = sk +
cN∗
r⊕

ln
(

1
1− γ

)
︸ ︷︷ ︸

T

,

which is an increasing and non-bounded sequence. This
scenario is the particular case of the model (1) when δ = 0
is proposed.

Therefore, the mathematical model (1) provides a theoret-
ical framework that captures minimal but relevant aspects of
the waste dynamics associated with the cleaning of illegal
micro-dumps and removal of waste containers based on
impulsive control. Specifically, we can derive the following
conclusion.

Proposition 1 Let be µ = 0 and

R =
δ

(1− γ)

[
δ + exp

{
r⊕τ

cN∗

}
−1
] .
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Therefore,

G⊕(t) = cN∗− [cN∗− (1−δ )G⊕(tk)]exp
{
− r⊕(t− tk)

cN∗

}
satisfies the model (1) for any t ∈ (tk, tk+1], where

G⊕(tk+1) = (1−δ )exp
{
− r⊕τ

cN∗

}
G⊕(tk)+

cN∗

(
1− exp

{
− r⊕τ

cN∗

})
and k ≥ 0, so that G⊕(t) ∈ [(1− δ )G⊕∗,G⊕∗] as t tends to
infinity. In addition, if R ≥ 1 then

G	(t) ∈ [r	τδ/(1−δ ),r	τ/(1−δ )]

as t tends to infinity. Conversely, when 0 < R < 1 follows
that

G	(t) ∈ [δG	∗,G	∗],

where G	∗ is given by (8) when (1− δ )G⊕(tk) < cN∗, and
by (9) when (1−δ )G⊕(tk)≥ cN∗ are obtained from k ≥ k∗.

Proof
Let be {tk} and {sk} two sequences given by that tk+1 =

tk + τ and sk+1 = sk +Tk such that G⊕(sk) = γcN∗. Integrat-
ing on (tk, tk+1] follows that

G⊕(t) = cN∗− [cN∗−G⊕(t+k )]exp
{
− r⊕(t− tk)

cN∗

}
, (4)

which solve the model (1). Thus, taking t = tk+1 we have the
stroboscopic map

G⊕(tk+1) = (1−δ )exp
{
− r⊕τ

cN∗

}
G⊕(tk)+

cN∗

(
1− exp

{
− r⊕τ

cN∗

})
. (5)

Analogously, for s ∈ (sk,sk+1],

G⊕(sk+1) = cN∗− [cN∗−G⊕(s+k )]exp
{
− r⊕Tk

cN∗

}
,

is obtained, and equivalent to

γcN∗ = cN∗− [cN∗−G⊕(s+k )]exp
{
− r⊕Tk

cN∗

}
,

or

G⊕(sk+1) = cN∗− [cN∗− γcN∗]exp
{
− r⊕Tk

cN∗

}
depending on the initial condition value. Therefore,

G⊕(s+k ) = cN∗

(
1− (1− γ)exp

{
r⊕Tk

cN∗

})

with 0 < Tk ≤ T , and

G⊕(sk+1) = cN∗

(
1− (1− γ)exp

{
− r⊕Tk

cN∗

})
with Tk ≥ T , are obtained.

Considering the equilibrium point of sequence {G⊕(tk)}k,
given by the expression (3), it is necessary to study the para-
metric conditions that allow it to occur that G⊕∗ > G⊕(s+k )
so that the waste containers to be removals before these are
full, and G⊕∗ > G⊕(sk+1) in the collapse case.

Firstly, G⊕∗ > G⊕(s+k ) is equivalent to

cN∗

(
1− exp

{
− r⊕τ

cN∗

})
1− (1−δ )exp

{
− r⊕τ

cN∗

} >N∗

(
1− (1− γ)exp

{
r⊕Tk

cN∗

})
,

if and only if,

exp
{

r⊕Tk

cN∗

}
>

δ

(1− γ)

[
δ + exp

{
r⊕τ

cN∗

}
−1
] = R.

Solving for Tk, a value exists whether R > 1. Therefore,
G′	(t) = r	 for any t 6= tk and G	(t+k ) = δG	(tk), so that
G	(t) = δG	(tk)+ r	(t− tk) for any t ∈ (tk, tk+1], where the
sequence {G⊕(tk)}k is increasing and satisfies G	(tk+1) =
δG	(tk)+ r	τ . Consequently, the solution of this difference
equation is given by

G	(tk) = δ
kG	(t0)+ r	τ · 1−δ k

1−δ
(6)

with tends to r	/(1−δ ) as k increases.
Secondly, from G⊕∗ > G⊕(sk+1) and by procedures anal-

ogous to the first case, exp{−r⊕Tk/cN∗} > R is obtained.
Solving for Tk, a value exists whether 0 < R < 1. Using the
expression (4) at t = sk follows that

γcN∗ = cN∗− [cN∗− (1−δ )G⊕(tk)]exp
{
− r⊕(sk− tk)

cN∗

}
,

if and only if,

sk = tk +
cN∗
r⊕

ln
(

cN∗− (1−δ )G⊕(tk)
cN∗(1− γ)

)
(7)

when (1−δ )G⊕(tk)< cN∗ from k ≥ k∗. Importantly,

Tk = sk+1− sk,

= τ +
cN∗
r⊕

ln
(

cN∗− (1−δ )G⊕(tk+1)

cN∗− (1−δ )G⊕(tk)

)
tends to τ as k increases. Therefore,

G	(t) =


δG	(tk)+ r	(t− tk) , If t ∈ (tk,sk]

G̃	(t) , If t ∈ [sk, tk+1]
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where

G̃	(t) = G	(sk)+(r	+ r⊕)(t− sk)−

− [cN∗− (1−δ )G⊕(tk)]
(

exp
{
− r⊕(sk− tk)

cN∗

}
−

− exp
{
− r⊕(t− tk)

cN∗

})
.

is obtained. Taking t = sk and t = tk+1, we have

G	(sk) = r	(sk− tk)+δG	(tk),

and

G	(tk+1) = G	(sk)+(r	+ r⊕)(τ− (sk− tk))

− [cN∗− (1−δ )G⊕(tk)]
(

exp
{
− r⊕(sk− tk)

cN∗

}
−

− exp
{
− r⊕τ

cN∗

})
.

Therefore, substituting the first equation into the second
equation, and considering the difference sk− tk, given by (7),
we have

G	(tk+1) = δG	(tk)+(r⊕+ r	)τ−

cN∗ ln
(

cN∗− (1−δ )G⊕(tk)
cN∗(1− γ)

)
− cN∗(1− γ)+

+[cN∗− (1−δ )G⊕(tk)]exp
{
− r⊕τ

cN∗

}
,

whose equilibrium point is given by

G	∗ =
(r⊕+ r	)τ− cN∗ ln

(
cN∗− (1−δ )G⊕∗

cN∗(1− γ)

)
− cN∗(1− γ)+ +[cN∗− (1−δ )G⊕∗]exp

{
− r⊕τ

cN∗

}
1−δ

. (8)

On the other hand, if (1−δ )G⊕(tk)≥ cN∗ from k≥ k∗ then,
integrating on (tk, tk+1] we have

G	(t) = G	(tk)+(r	+ r⊕)(t− tk)+

+[(1−δ )G⊕(tk)− cN∗]exp
{
− r⊕(t− tk)

cN∗

}
,

and taking t = tk+1, follows that

G	(tk+1) = δG	(tk)+(r	+ r⊕)τ+

+[(1−δ )G⊕(tk)− cN∗]exp
{
− r⊕τ

cN∗

}
,

whose equilibrium point is given by

G	∗ =
(r⊕+ r	)τ +[(1−δ )G⊕∗− cN∗]exp

{
− r⊕τ

cN∗

}
1−δ

.

(9)
Therefore, G	(tk) tends to G	∗ given by (8) or (9) as k in-
creases, according on the fulfillment of (1−δ )G⊕(tk)< cN∗
or (1−δ )G⊕(tk)≥ cN∗ from k ≥ k∗.

Finally, if R = 1 then

γ = 1− δ

δ + exp
{

r⊕τ

cN∗

}
−1

= 1−
δ exp

{
− r⊕τ

cN∗

}
1− (1−δ )exp

{
− r⊕τ

cN∗

} ,

if and only if,

γcN∗ =
cN∗

(
1− exp

{
− r⊕τ

cN∗

})
1− (1−δ )exp

{
− r⊕τ

cN∗

} = G⊕∗.

Thus, G⊕(sk) = G⊕∗ and sk = tk from k ≥ k̃. Therefore,

G	(t) = δG	(tk)+ r	(t− tk)

for t ∈ (tk, tk+1]. Using the (6) relationship, it follows the
result. �

Regarding the threshold value, denoted by R, using the
concept of elasticity (Martcheva, 2015), which is defined by
ε

p
R := (∂R/∂ p) · (p/R)≈%∆R/%∆p where p is some pa-

rameter of interest, follows that

ε
γ

R =
γ

1− γ
, ε

δ

R = 1− δ

δ + eκ −1
, ε

κ
R =− κeκ

δ + eκ −1
,

where κ = r⊕τ/{cN∗} is the maximal occupancy ratio. Thus,
ε

γ

R > 0, εδ

R > 0 and εκ
R < 0. Therefore, as the subjective

occupancy fraction and the removal fraction increase or the
maximal occupancy ratio decreases, the available capacity
of waste containers is promoted (see Figure 3). However,
increasing the removal fraction increases the waste amount
range in micro-dump in the long term (see Proposition 1).

NUMERICAL SIMULATIONS

To validate our mathematical result, Figure 4 illustrates
the Proposition 1 conclusions’ based on the varying γ

parameter value, and thus, in the filling level γcN∗. Con-
sequently, R and γcN∗ values decrease as γ decreases too,
and the inequality fulfillment (1− δ )G⊕(t) < cN∗ transit
to (1− δ )G⊕(t) ≥ cN∗, which can also be promoted as δ

increases to one. However, this variation increases signifi-
cantly the waste amount range in the illegal micro-dumps
according to the trade-off between removal and cleaning.
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Figure 3: Combinations of δ ∈ (0,1), γ ∈ (0,1), and κ ∈ (0,6) so
that R > 1, where κ = r⊕τ/{cN∗}. Importantly, the

complementary region that represents 0 < R < 1 is significantly
greater than R ≥ 1 region.

On the other hand, Figure 5 shows how the temporal dy-
namics of the model (1) vary as the container stealing rate µ

increases, taking as reference the dynamics associated with
µ = 0 and a parameter set so that R ≥ 1 is obtained (see
Fig.5(a)). Here, it is observed the transition among the dif-
ferent scenarios given by Proposition 1, where the capacity
of containers in the long term allows a constant waste inflow
or not, because these are full, implying waste increases in il-
legal micro-dumps. Importantly, it is the effect steal of waste
containers on garbage dynamics, significantly reducing the
containers’ top-fill level and promoting their collapse, and
thus the illegal micro-dump maintenance.

4 DISCUSSION AND CONCLUSIONS

Our goal was to study the trade-off dynamics between the
removal of waste containers and the cleaning of illegal
micro-dumps. This dynamics was represented using a
mathematical model described by an impulsive differential
system at both fixed and variable times (Cordova-Lepe et al.,
2015). The findings establish two scenarios in the long
term, the containers are full or not, and whose differentiation
depends on a threshold that is a function of all model
parameters. In particular, when the waste container density
does not vary (taking µ = 0), an explicit representation
is obtained for this threshold value, denoted by R. Thus,
when 0 < R < 1 the containers are full in the long term.
Conversely, when R ≥ 1 the containers have a capacity
for waste disposal. Therefore, it is natural to associate R

as a safety factor that relates the capacity and demand by
a quotient. From the safety factor is possible to monitor
and guard the integrity of a specific process, particularly of
engineering (Hansson, 2009).

Based on elasticity analysis of static quantities
(Martcheva, 2015), this safety factor increases as the
removal (δ ) and/or the subjective occupancy (γ) fractions
increase too, or by decreasing the maximal occupancy
ratio (κ = r⊕τ/{cN∗}). As the trade-off result, whose
consequence implies that illegal micro-dumps persist, our
findings establish that the efforts must be aimed at γ increase
or κ decrease. Firstly, we established that γ represents the
subjective occupancy fraction, a measure that pretends to
consider human behavior faced in the disposition of legal
waste disposal, where the location and access to waste
containers are keys in the promotion and maintenance
of habits with a socio-environmental co-responsibility
(Valenzuela-Levi and Flores-Castillo, 2023). Secondly,
the decrease of κ , by the reduction of r⊕ or the increase
of N∗, is associated with promoting strategies of recycling
and upcycling (Ministerio de Medio Ambiente, 2021; Yang
et al., 2023; Valenzuela-Levi, 2019).

The illegal disposal of solid waste in urban areas has
been found to affect the structure and function of natural
ecosystems (Vergara and Tchobanoglous, 2012). As a
result, it is crucial to study and simulate waste management
practices in cities to create sustainable strategies that can
reduce the environmental and health hazards linked with
improper waste disposal. In this regard, comprehending
the elements contributing to the development of small-scale
waste disposal locations and the measures implemented by
local government agencies is vital for making informed
choices that reduce the occurrence of new dumping sites
(Shmelev and Powell, 2006).

Hence, developing models that represent disposal be-
haviors in these settings is important for devising efficient
measures to address the growing issue of municipal solid
waste. A future improvement that could be made in this
regard might be the incorporation of a spatially explicit an-
alytic framework to the problem of predicting where would
be the most probable location of a new micro-dumping area,
based on both, the distribution of the collecting containers
and the “environmental” characteristics of frequent micro-
dumping points.

There are germ or nuclear mathematical models; that is,
although they do not fit in detail with each of the observable
expressions, that is, the variations of particular phenomena,
they come to contain the minimum elements and relation-
ships to characterize the essence of the class in that such phe-
nomena are inserted. This is the case with the logistic model
in population dynamics or the SIR (susceptible-infectious-
removed) propagation model in epidemiology. These mod-
els, called strategic (Jiliberto, 2020), act as platforms since
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they have the property that, when assembled or added speci-
ficity, they reach a resolution that can be contrasted with
a specific reality, and, in general, they become ad hoc in-
struments, that is, with greater descriptive and projection
possibilities. In our opinion, the model (1) aspires to be
strategic, since considering the complexity that waste dis-
posal processes have in situ, its minimalist conceptual struc-
ture achieves connections whose mathematical analysis in-
terpreted at sight makes practical sense.
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(a)

(b)

(c)

Figure 4: Temporal dynamics of model (1) according to Proposition 1. The common parameter values are τ = 30, µ = 0, c = 2.0,
δ = 0.1, r	 = 0.1, r⊕ = 1.0, and N∗ = 30. Particularly, (a) γ = 0.95 with R ≈ 1.6434 so that G	 ∈ [0.33,3.33], (b) γ = 0.85 with
R ≈ 0.5478 so that G	 ∈ [2.68,26.81], and (c) γ = 0.75 with R ≈ 0.3287 so that G	 ∈ [3.25,32.58]. Importantly, the dashed line

represents the top-fill level, G⊕ = γcN∗.
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(a)

(b)

(c)

(d)

Figure 5: Temporal dynamics of model (1) as parameter value µ increases. The common parameter values are τ = 30, c = 2.0, δ = 0.2,
r	 = 0.01, r⊕ = 1.0, γ = 0.95, and N∗ = 20 so that R = 3.0372. In (a) µ = 0, (b) µ = 0.001, (c) µ = 0.01, and (d) µ = 0.1. Importantly,

the dashed line represents the top-fill level, G⊕ = γcN.
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