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ABSTRACT

In this paper, we define an intraguild predation model of one-resource and two-predator, in which the mesopredator catched
by a top predator, feeds on a resource that grows according to a logistic growth law; for both the meso and the top predator,
Holling type II functional responses are considered. Predators and prey diffuse into a connected bounded region in R2. Two
scenarios are considered: 1. As a defense mechanism, the resource attracts the top predator that feeds on the mesopredator;
2. The top predator in search of food moves towards areas where the mesopredator population is increasing. Some general
properties of the solutions of the model are proved. In addition, the results of the numerical simulations carried out to analyze
the effect on the spatial distribution of the populations of the indirect defense mechanism of the first scenario are shown. This
is contrasted with the results of the model simulations corresponding to the second scenario, in which the diffusion of the top
predator is regulated by a tendency to move towards the mesopredator gradient.

Keywords:

Competing species; Intraguild predation; Chemotaxis, Active-search hunting

RESUMEN

En este trabajo se define un modelo de depredación intragremial de un recurso y dos depredadores, en el cual el recurso crece
de acuerdo a una ley de crecimiento logístico y es el alimento de un mesodepredador que es capturado por el depredador
principal; para ambas clases de depredadores se considera una respuesta funcional Holling tipo II. Depredadores y presas se
difunden en una región conexa y acotada de R2. Se estudian dos escenarios: 1) El recurso atrae, como un mecanismo de
defensa, al depredador principal que se alimenta del mesodepredador; 2) En la búsqueda de alimento, el depredador principal
se mueve hacia las áreas donde es creciente la población del mesodepredador. Se demuestran algunas propiedades generales
de las soluciones del modelo. Además, se realizan simulaciones numéricas para analizar los efectos sobre la distribución
espacial de las poblaciones, del mecanismo de defensa indirecta del primer escenario. Esto es confrontado con los resultados
de la simulaciones del modelo correspondiente al segundo escenario, en el que la difusión del depredador principal está
regulada por su tendencia a moverse hacia el gradiente del mesodepredador.

Palabras Claves:

Competencia de especies; Depredación intragremial; Quimiotaxis; Cazador de búsqueda activa
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1 INTRODUCTION

I ndividual movement regulated by concentrations of
chemical substances is a very frequent natural phe-

nomenon; known as Chemotaxis is an important mechanism,
for instance, of bacterial populations in search of nutrients
or to establish symbiotic relationships (see (Raina et al.,
2019)). Chemical components has been observed as a de-
fense strategy of several species. In (Pereira et al., 2000),
the authors review some recent studies focused on charac-
terizing the so-called plant volatiles induced by herbivores
and the olfactory mechanisms present in some tritrophic in-
teractions. The way in which organisms respond to chemo-
taxis has been discussed in (Iino and Yoshida, 2009). In par-
ticular, it describes the movements that C. elegans makes
when the NaCl concentration decreases. In this paper it is
mentioned that C. elegans rapidly changes the direction of
locomotion through the use of a set of stereotyped behav-
iors, in response to a decrease in the concentration of the
chemical substance. To get some insight of the impact of
chemotactic processes on the population dynamics of some
species, (Pereira et al., 2000) studied the chemical defense
of two species of brown alga Dictyota menstrualis and Dic-
tyota mertensii used against herbivores with limited mobility,
the amphipod Parhyale hawaiensis and the crab Pachygrap-
sus transversus. In fact, natural defense against predation is
very well documented and it is present in both invertebrate
and vertebrate species, see (Dumbacher and Pruett-Jones,
1996), (Eisner et al., 2000), (Fattorini et al., 2010), (Matz
et al., 2008), (Buonomo et al., 2019). On the other hand,
the study about the relationship of organism dispersal and
community structure of interacting species has a long his-
tory. Since the works of Kolmogorov (Kolmogorov, 1937)
and Skellam (Skellam, 1951), mathematical modeling of dif-
fusion and random walk has been widely applied in the study
of the effect of individual movement on the dynamic prop-
erties of different kinds of species interaction. Among the
recent works on this topic it is (Yang and Fu, 2008) where
the authors consider a tritrophic food chain with predators
and one resource; the existence and boundedness of solu-
tions and stability of equilibrium solutions are analyzed. Sta-
bility and Turing patterns of a diffusive predator-prey model
have been analyzed in (Song et al., 2020). Diffusion and de-
lay effect has been incorporated in an intraguild predation
model in (Han and Dai, 2017), where the authors studied
how the delay on the conversion rate of mesopredator in-
duces spatiotemporal patterns. About diffusion in predator-
prey context see (Venturino and Petrovskii, 2013) and (Ai
et al., 2017). In this work we analyzed how the emission of
chemical substances which attract predators of consumers of
a resource impacts the spatial distribution of species. A lab-
oratory study on this topic is (Kessler and Baldwin, 2001)
where Kessler and Baldwin have found that volatile emis-
sions from Nicotiana attenuata could reduce the number of
herbivores up to 90%.

In this work, we consider an intraguild predation model of
one resource and two predators; the importance of this in-

teraction for population ecology has been explained by Polis
and Holt in (Polis and Holt, 1992). We consider that meso-
predator feed on a resource which grows acoording to a lo-
gistic growth law and it is consumed by a top predator; func-
tional responses of meso and top predators are of Holling
type II. Predators and prey difusse in a connected bounded
region Ω⊂ R2 of the plane whose boundary ∂Ω is a regular
curve. We consider two cases: in the first case, the model is

∂u
∂ t

= d0∆u+αu
(

1− u
K

)
− buv

u+a
,

∂v
∂ t

= d1∆v+ γ
buv

u+a
− cvw

v+d
−µv, (1)

∂w
∂ t

= d2∆w+β
cvw
v+d

−ρw−∇ · (χ1 (v,w)∇v) ,

the random dispersal of top predators is tempered by a
certain tendency to move up the gradient of mesopreda-
tors. Pheronomes have been reported (see (Yoshimizu et al.,
2018)) to affect foraging behavior in such a way that the in-
dividual chemotactic response is modulated by interactions
with other organisms in the population. For this reason, the
chemotactic sensitivity χ1 (v,w) depends on w.

In the second case, as a chemotactic defense mechanism
of the prey is considered, the resource population attracts top
predators which feeds on mesopredator; this kind of indirect
defense against predators has been reported in (Aljbory and
Chen, 2018), see also (Buonomo et al., 2019); 2) top predator
in search of food moves towards areas where the mesopreda-
tor population is increasing The model is given by

∂u
∂ t

= d0∆u+αu(1− u
K
)− buv

u+a
,

∂v
∂ t

= d1∆v+ γ
buv

u+a
− cvw

v+d
−µv, (2)

∂w
∂ t

= d2∆w+β
cvw
v+d

−ρw−∇ · (χ2(u,w)∇u),

in this model the random movement is regulated by the gradi-
ent of population density of the resource. In the above mod-
els, the carrying capacity K = K(x,y) is a non-negative func-
tion defined in Ω and describes the diverse suitability of the
niche of the resource. Niche suitability and size population
has been addressed in (Osorio-Olvera and Falconi, 2019). It
is assumed that the flux vanishes in the boundary of Ω,

∂u
∂η

(x, t) =
∂v
∂η

(x, t) =
∂w
∂η

(x, t) = 0,x ∈ ∂Ω, t > 0 (3)

where ∂/∂η = η ·∇, and η is the normal vector to ∂Ω.
The intrinsic growth of the resource u is denoted by α; b
and c are the mortality rate by predation on u and v, respec-
tively. The conversion rate of biomass captured by v and w
are γ and β , respectively. The parameters µ and ρ stand for
the mortality rate of meso and top predators, respectively.
The half saturation constant a estimates the handling time of
prey by predators. In Model (1) it is assumed that the regu-
lating mechanism against of random dispersal of w depends
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on a volatile substance generated by v; in Model (2), it is
generated by u. Two predators which feed on a common re-
source subject to a Lotka-Volterra interaction was considered
in (Wang et al., 2017), where it was assumed that diffusive
movement of predators is controlled by the prey density gra-
dient. In (Tello and Wrzosek, 2016) was analyzed a predator-
prey model where predator moves toward the gradient of a
chemical released by prey.
The underlying ordinary differential system corresponding to
Models (1) and (2) is given by

u′ = αu
(

1− u
K

)
− buv

u+a
,

v′ = γ
buv

u+a
− cvw

v+d
−µv, (4)

w′ = β
cvw
v+d

−ρw.

The system (4) has the following equilibrium points

i) P1 = (0,0,0)

ii) P2 = (K,0,0)

iii) P3 =
(

aµ

bγ−µ
, aαγ(bγK−µ(a+K))

K(bγ−µ)2 ,0
)
.

Under appropriate conditions, this system posses one equi-
librium point P4 = (u1,v1,w1) with positive coordinates
given by

u1 = 1
2

(
−a+K +

√
cαβ (a+K)2−(4bdK+(a+K)2

α)ρ

(cβ−ρ)α

)

v1 =
dρ

cβ −ρ

w1 =
(d + v1)(bγu1− (a+u1)v1µ)

c(a+u1)

Point P1 is always unstable; P2 is locally asymptotically
stable if bKγ − aµ −Kµ < 0 and unstable if bKγ − aµ −
Kµ > 0; P3 is stable if bKγ − aµ − Kµ > 0 and bγa >
bKγ − aµ − Kµ and unstable if bKγ − aµ − Kµ > 0 and
bγa < bKγ−aµ−Kµ .

2 EXISTENCE OF POSITIVE SOLUTION

In this section we provide conditions for the existence of pos-
itive solutions of systems (1) and (2) for the initial conditions

t = 0: u = u0 (x) , v = v0 (x) , w = w0 (x) , x ∈Ω (5)

and the boundary conditions given by (3). Let p > n ≥ 1;
then W 1,p (Ω,Rn) is continuously embedded in the continu-
ous function space C (Ω;Rn). Let

X := {y ∈W 1,p (
Ω,R3) |η ·∇y|∂Ω

= 0}.

It is assumed that there exist 0 < εm, εM , such that

εm < K(x,y)< εM, for all(x,y) ∈Ω (6)

Theorem 1 If (u0,v0,w0) ∈ X, then

(i) There exists T = Tmax ∈ [0,∞), which depends on
the initial conditions (5) such that the problem
(1),(3)and (5) has a unique maximal solution (u, v, w)
on Ω × [0,Tmax) and (u(·, t) , v(·, t) , w(·, t)) ∈
C ((0, Tmax) ,Ω), (u,v,w) ∈C2,1

(
(0,Tmax)×Ω,R3

)
;

(ii) If u0, v0, w0 ≥ 0 on Ω, then u, v, w≥ 0 on Ω× [0,Tmax);

(iii) If ‖(u,w,w)(·, t)‖L∞(Ω) is bounded for all t ∈ [0,Tmax),
then Tmax =+∞; equivalently, (u,v,w) is a global solu-
tion.

Proof Let z = (u,v,w) ∈ R3. Then, (1),( 3) and (5) can be
written as

zt = ∇ · (A(z)∇z)+F (z) on Ω× [0,∞)

Bz =
∂

∂η
z = 0 on ∂Ω× [0,∞) (7)

z(·,0) = (u0,v0,w0) en Ω,

where

A [z] =

 d0 0 0
0 d1 0
0 −χ1 d2


and

F (z) =

 u
(
α
(
1− u

K

)
− bv

u+a

)
v
(
γ

bu
u+a −

cw
v+d −µ

)
w
(
β

cv
v+d −ρ

)


Matrix A [z] is triangular, then the eigenvalues are the diag-
onal entries d0, d1 and d2, which are assumed to be positive,
then the systen (7) is normally elliptic, see pages 15-16 of
(Amann, 1990). The result follows from (Haskell and Bell,
2020). �

According to the above theorem, to prove the existence of
global solutions it is necessary to show that u, v and w are
uniformly bounded in L∞ (Ω).

Theorem 2 If (u0,v0,w0) ∈ X, then the solutions of the Sys-
tem (1), with boundary conditions (3) and initial conditions
(5) are bounded.
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Proof Let W (x, t) = u+ 1
γ
v+ 1

γβ
w, so

d
dt

∫
Ω

(W (x, t)) =
∫

Ω

(
d0∆u+αu

(
1− u

K

)
− buv

u+a

)
dx

+
∫

Ω

(
1
γ
(d1∆v)

)
dx

+
∫

Ω

(
1
γ

(
γ

buv
u+a

− cvw
v+d

−µv
))

dx

+
∫

Ω

(
1

γβ

(
d2∆w+β

cvw
v+d

−ρw
))

dx

−
∫

Ω

(
1

γβ
(∇ · (χ1 (v,w)∇v))

)
dx

=
∫

Ω

(
d0∆u+

1
γ

d1∆v+
1

γβ
d2∆w

)
dx

+
∫

Ω

(
αu
(

1− u
K

))
dx

+
∫

Ω

(
− buv

u+a
+

buv
u+a

− c
γ

vw
v+d

)
dx

+
∫

Ω

(
−µ

γ
v+

c
γ

cvw
v+d

− ρ

γβ
w
)

dx

≤
∫

Ω

(
αu
(

1− u
K

)
− µ

γ
v− ρ

γβ

)
dx

It follows that

d
dt

∫
Ω

Wdx+
∫

Ω

(
µ

γ
v+

ρ

γβ
w
)

dx≤∫
Ω

αu
(

1− u
K

)
dx. (8)

On the other hand, let µ0 = min{µ,ρ} that implies

d
dt

∫
Ω

Wdx+µ0

∫
Ω

(
1
γ

v+
1

γβ
w
)

dx≤

d
dt

∫
Ω

Wdx+
∫

Ω

(
µ

γ
v+

ρ

γβ
w
)

dx. (9)

From (8) and (9), we obtain that

d
dt

∫
Ω

Wdx+µ0

∫
Ω

(
u+

1
γ

v+
1

γβ
w
)

dx≤∫
Ω

(
αu
(

1− u
K

))
dx+

∫
Ω

µ0udx (10)

Note that ∫
Ω

(
(α +µ0)u− αu2

K

)
dx ≤

∫
Ω

1
4

K (α +µ0)
2

α
dx ≤ (11)

1
4

εM (α +µ0)
2

α
|Ω|

Now, let K0 = 1
4

εM(α+µ0)
2

α
|Ω|, then from (10) and (12) we

have that

d
dt

∫
Ω

Wdx+µ0

∫
Ω

(
u+

1
γ

v+
1

γβ
w
)

dx≤ K0

from this, is clearly evident that∫
Ω

(
u+

1
γ

v+
1

γβ
w
)

dx≤ K0 + ce−t

It follows that solutions are bounded, since according to The-
orem 1.(ii), u,v,w are nonegative. �

The proof of the following theorem is similar to those of
Theorem 1.

Theorem 3 Let (u0,v0,w0) ∈ X.

• There exists T = Tmax ∈ [0,∞), which depends on the
initial conditions (5) such that the problem (2),(3)
and (5) has a unique maximal solution (u, v, w)
on Ω × [0,Tmax) and (u(·, t) , v(·, t) , w(·, t)) ∈
C ((0, Tmax) ,Ω), (u,v,w) ∈C2,1

(
(0,Tmax)×Ω,R3

)
;

• If u0, v0, w0 ≥ 0 on Ω, then u, v, w≥ 0 on Ω× [0,Tmax);

• If ‖(u,w,w)(·, t)‖L∞(Ω) is bounded for all t ∈ [0,Tmax),
then Tmax =+∞; i.e., (u,v,w) is a globally bounded so-
lution.

Note that v and w vanish if γb ≤ µ and βc ≤ ρ , respec-
tively. From now on, we assume that γb > µ and βc > ρ .

Let Y =
{

U = (u,v,w) ∈
[
C1
(
Ω
)]3 |∂ρ u(x) = 0, x ∈ ∂Ω

}
,

and µi be the eigenvalues of the operator −∆ on Ω with the
homogeneous Neumann boundary condition. We denote by
E (µi), the eigenspace corresponding to µi in C1

(
Ω
)
. let{

φi, j, j = 1,2, ...,dim(E (µi))
}

be a orthonormal basis of E (µi) and Yi j =
{

C ·φi j|C ∈ R3
}

.
Then,

Yi =⊕dim(E(µi))
j=1 Yi j,Y =⊕∞

i=1Yi.

Theorem 4 Let 0 < K ∈ R. If bKγ−aµ−Kµ < 0 then the
equilibrium point P2 of system (1) is asymptotically stable.

Proof Let A [z] =

 d0 0 0
0 d1 0
0 −χ1 d2

 as in theorem 1 and

L = A [z]∆+J1 where J1 is the Jacobian matrix of the system
without diffusion evaluated at P2; i.e.

J1 =

 −α − bK
a+K 0

0 bKγ

a+K −µ 0
0 0 −ρ

 .

The linearization of the system at P2 is Ut = LU . Yi is invari-
ant with respect to operator L for all i≥ 1; λ is an eigenvalue
of L restricted to Yi if and only if is an eigenvalue of matrix
−µiA [z]∆+ J1.

The characteristic polynomial of µiA [z]∆+ J1 is

ϕi (λ ) = (λ +µid1 +α)

(
λ +µid2−

bKγ

a+K
+µ

)
(λ +µid2 +ρ)
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whose roots are−µid1−α ,−µid2+
bKγ

a+K −µ and−µid2−
ρ . Therefore, the point-spectrum of L consists of eigenvalues
that satisfy {Reλ ≤ −(1/2)max{α, − bKγ

a+K + µ,ρ}} when-
ever bKγ − aµ −Kµ < 0; from which stability around P2
follows, [(Henry, 2006),Th. 5.1.1 ]. �
The spatial discretization that we apply to perform some nu-
merical simulations of the previous models are describes in
the Appendix. In the following computations we apply the
finite element method with a time step ∆t = 0.001 and the
mesh is conformed by 17385 vertices, 34288 triangles and
hmin = 0.0117835.hmax = 0.028418.

3 NUMERICAL SIMULATIONS

In this section, some numerical simulations are carried out
in order to obtain some knowledge about the effect on the
population density of the indirect defense mechanism of the
resource against the meso–predator, which consists on the
attraction of the main predator towards the resource. This
will be contrasted with the results of the corresponding sim-
ulations of Model (1), in which the random diffusion of the
main predator is regulated by a tendency to move towards the
gradient of the meso-predator; this is the case of predators
actively searching for prey, see (Ioannou and Krause, 2008),
(Ross and Winterhalder, 2015) and the references cited there.

MODEL 1: ACTIVE-SEARCH HUNTING.

In the following we consider Model (1) where the top preda-
tor is an active-search hunter. We take

χ1(v,w) = e1w− e2v.

Therefore the top predator move towards the gradient of
mesopredator only if its population density is large enough
compared to that of the mesopredator. The ratio e2

e1
measures

the defensive capacity of the mesopredator in terms of its
population size; the larger this ratio, the greater the density
of the predator required to advance towards the prey. The
parameter values are given by α = 5, a = 2.0, b = 5.0, c =
0.1, d = 2.0, β = 1.0, γ = 1.0, µ = 0.05, ρ = 0.05, d0 = 0.1,
d1 = 1,d2 = 1.
For this parameter values, the equilibrium points of system
(4) are P1 = (0,0,0), P2 = (K,0,0), P3 = ( 2

99 ,
200(99K−2)

9801K ,0) .
Existence and stablity properties of these equilibrium points
are described in Table 1. Notice that there is no CEP point
for the above parameter values. For the numerical computa-
tions we assume that Ω = [−1,1]× [−1,1] and we have used
the FreeFem++ software (Hecht, 2012). Initial conditions for
the spatial distribution of the resource, the meso-predator and
top predator are considered as

u0(x,y) = 2exp(−10(x2 +(y− .9)2))(1− x2)2(1− y2)2;
v0(x,y) = 2exp(−(x+ .9)2− (y+ .9)2)(1− x2)2(1− y2)2;
w0(x,y) = 1.5

for all x,y ∈ Ω. In contrast with the meso predator and the
resource, the top predator is initially uniformly distributed,
(see Figure 1).

Table 1

Point Existence Interval Stable Unstable
P1 K > 0 K > 0

P2 K > 0 K < 2
99 K > 2

99

P3 K > 2
99

2
99 < K < 202

99 K > 202
99

P4 K > 200
99 K > 200

99

Defensive capacity and species distribution

We consider five different defensive capacities of the prey.
The suitability of the habitat of the resource is given by

K(x,y) = 2exp(−5((x+ .75)2 +(y− .75)2))

+2exp(−5((x− .75)2 +(y+ .75)2))

+2exp(−5((x+ .75)2 +(y+ .75)2))

+2exp(−5((x− .75)2 +(y− .75)2)).

Notice that the range of K in Ω is contained in the interval
( 2

99 ,
200
99 ). Therefore, according to Table 1 system 4 without

diffusion does not have the coexistence point P4 and also the
point P3 is asymptotically stable. Thus, without diffusion the
top predator w would become extinct.

First, let e1 = 1.0, e2 = 1.0. In this case, the defensive
capacity of the prey is neutral. Top predator move towards
mesopredator whenever its density be greater than the one of
the mesopredator

Second, let e1 = 1.0,e2 = 0.5 In this case, the mesopreda-
tor defense against of top predator is lesser than the above
case. Thus, we observe that predators are closer to the meso-
predators than in the first case (see Figures 2 and 6).

Third, let e1 = 1.0, e2 = 2.0. Prey presents a strong de-
fense capacity. Notice that predators tends to move towards
the lower density areas of the prey population, (see Figures 2
and 3).

Fourth case, let e1 = 1.0, e2 = 10.0. Prey presents still a
defense capacity stronger than the previous case.

Fifth case, Let e1 = 10.0, e2 = 1.0 This is the smallest de-
fensive capacity considered in this section.

From the comparison of Figures 6-5, we conclude that de-
fensive capacity has a negligible effect on the prey popula-
tion, if the predation rate is not large enough. Indeed, the
main impact is over the spatial distribution of both the meso
predator and the top predator.

Habitat suitability and species distribution

To understand how the ecological landscape impact species
distribution, we consider two different characterization of the
carrying capacity. In either case, the values of parameters of
χ1 are e1 = 1.0, e2 = 10.0, and the initial condition of u is

u0(x,y) = 2exp(−10(x2 + y2))(1− x2)2(1− y2)2
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(a1) u, t = 0 (b1) v, t = 0 (c1) w, t = 0

Figure 1: Contour plots of time evolution of the resource u, mesopredador v and top predador w at different times.

The initial conditions v0(x,y) and w0(x,y) are the same as
above.
First, we consider a carrying capacity given by

K(x,y) = 2exp(−5((x+ .75)2 +(y− .75)2))

+2exp(−5((x− .75)2 +(y+ .75)2))

+2exp(−5((x+ .75)2 +(y+ .75)2))

+2exp(−5((x− .75)2 +(y− .75)2)).

The highest suitability is reached at four symmetrical points
respect to the origin.

In Figure 7 are shown plots of the numerical solutions of
u, v and w at different times. Note that as time passes, the
resource tends to occupy the most suitable sites. The meso-
predator moves towards the sites with the higher resource
density and its defensive capacity (e2/e1) is large enough to
keep the top predator away.

In this second case, the habitat of the resource is richer
since its suitability is given by

K(x,y) = 2exp(−5((x+ .75)2 +(y− .75)2))

+2exp(−5((x− .75)2 +(y+ .75)2))

+2exp(−5((x+ .75)2 +(y+ .75)2))

+2exp(−5((x− .75)2 +(y− .75)2))

+2exp(−5(x2 + y2))

The highest suitability is reached at four symmetrical points
respect to the origin and at the origin. The spatial distribution
of the three species is shown in Figure 8.
As in the first case, the mesopredators move towards the sites
of higher density of the resource and the top predator is lo-
cated far enough away from its prey because e2/e1 is rela-
tively high. It seems that the richness of the habitat does not
induce any change in the distribution patterns. Top predator
tends to occupy the areas less densely populated by meso-
predators, if e2/e1 is high enough.

RESOURCE DEFENSE AND SPECIES DISTRIBUTION

Some species defend themselves by attracting predators from
their natural enemies. This is very frequent for instance
in plant species, see (Price et al., 1980) and the bibliogra-
phy cited there. In (Aljbory and Chen, 2018) it has been
described 24 species of predators which are attracted by
volatiles generated by plants damaged by herbivores. In this

paper, the authors raise the question about the effectiveness
of predator species in controlling specific insect pests. In the
following we analyze numerically the impact on the meso-
predator distribution of an increasing predation rate of the
top predator when this is attracted by the resource species.
To analyze the relationship between the distribution of the
mesopredator and the predation rate of a top predator that is
attracted to the resource, we use Model (2) which is shown
below.

∂u
∂ t

= d0∆u+αu(1− u
K(x,y)

)− buv
u+a

,

∂v
∂ t

= d1∆v+ γ
buv

u+a
− cvw

v+d
−µv, (12)

∂w
∂ t

= d2∆w+β
cvw
v+d

−ρw−∇ · (χ2(u,w)∇u).

The sensitivity function is χ2(u,w) = quw. Thus, the move-
ment of top predators towards the gradient of u is faster the
higher its own density or that of the resource.
Initial conditions for the spatial distribution of the resource,
the meso-predator and top predator are considered as

u0(x,y) = 2exp(−(x2 +(y− .9)2)(1− x2)2(1− y2)2;
v0(x,y) = 2exp(−(x+ .9)2− (y+ .9)2)(1− x2)2(1− y2)2;
w0(x,y) = 1.5

for all x,y ∈ Ω. The suitability of the habitat of the resource
is given by

K(x,y) = 2exp(−5((x+ .75)2 +(y− .75)2))

+2exp(−5((x− .75)2 +(y+ .75)2))

+2exp(−5((x+ .75)2 +(y+ .75)2))

+2exp(−5((x− .75)2 +(y− .75)2)).

Let the parameter values be given by α = 5, a = 2.0, b =
5.0, d = 2.0, β = 1.0, γ = 1.0, µ = 0.05, ρ = 0.05, d0 = 0.1,
d1 = 1,d2 = 1.
The sensitivity function is χ2(u,w) = quw. The below simu-
lations are executed for different values of q and c.

It is worth to note that an increment of the predation rate
c not necessarily induces an increment on the predator pop-
ulation. In Figure 10 the predation rate is c=1.5, and the
predator population is lesser than the population showed in
Figure 9 where the predaton rate is c = 1.0. This is due, in
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part, to the weak attraction of the resource on the individual
predators, as this allows predators to remain randomly dis-
persed throughout space preventing the mesopredator popu-
lation from reaching a level high enough to support a large
population of predators. On the other hand, By comparing
Figure 10 with Figure 11 we observe that the main effect on
the increment of the attraction paremeter q is on the spatial
distribution of meso and top predators. For q = 1.0 (Fig-
ure 11), top predators tend to occupy the places most densely
populated by the resource; in contrast, mesopredators occupy
the places least densely populated by top predators. How-
ever, if the predation rate is large enough, the mesopreda-
tor population is depleted and spatial complementarity is lost
(see Figure 12). This effect vanishes if he resource’s attrac-
tion to top predators grows; in fact, for q = 10, the separation
of top and mesopredators habitats is strengthened for c = 1
and all three species reach relatively large populations levels
compared to c = .1 (see Figure (13-15). The coexistence of
the three species requires a proper balance between the rate
of predation and the attraction of predators to the resource
population. In Figure 14, we observe very low mesopredator
population levels and a sharp concentration of top predators
around the areas most populated by mesopredators.

4 CONCLUSIONS

With the aim to analyze the rol of migration and defensive
mechanisms of the prey, in this work two variations of a
tritrophic model have been considered. According to Table
(1), if the three species remain in the same location (Model 4
without diffusion), top predator would become extinct since
only the equliibrium point P3 is stable. In the first case, where
a top predator is an active-search hunter it is assumed that as
prey density increases, searching intensity decreases (Model
(1) with χ1(v,w) = e1w− e2v). Numerical simulations show
that all three species coexist and both resource and prey tend
to be concentrated around sites (x∗,y∗) ∈ Ω where resource
suitability is greatest; that is, sites (x∗,y∗) where the carry-
ing capacity K(x∗,y∗) is the maximum. The spatial distri-
bution of predator depends on the defensive capacity of the
prey; for e2/e1 low enough, predators and prey have a simi-
lar distribution (see Figures 6, 5). However, if e2/e1 reaches
a large enough level, the resource and prey populations share
the same space, but the predator occupies the locations less
populated by prey(see Figures 2, 3, 4). Hence, our numerical
simulations provide evidence that migration favors coexis-
tence and behavioral characteristics, such as a defense mech-
anism, can impact the spatial distribution of species. Further-
more, we find that the distribution of prey follows a pattern
similar to that of the resource, which tends to be distributed
near the places of greatest suitability. The spatial distribu-
tion is topic which has been analyzed from a diverse points
of interest. For instance, the cost of a defense mechanism
has been considered in (Wang et al., 2017) where the au-
thors analyze how this cost impact on pattern distribution of
predators and preys. The role of predators on the spatial dis-
tribution has been studied from a experimental point of view

in (Livingston et al., 2017), where preys do not present a de-
fense against predators. They found that was not the patch
type but the distribution of predators that most strongly pre-
dicted the composition of the prey community. The effect of
diffussion on the spatial distribution has beeen analyzed in
(Kumari, 2013) .
A second point of interest in this work is how the attraction
of enemies of my enemies influences the dynamics of a com-
munity. In some cases, the attraction activity is caused by
volatiles emitted by the resource organisms. We have ana-
lyzed this question with the Model (2) where the predator
moves toward the resource gradient according to the sensiv-
ity function χ2(u,w) = quw; that is, the higher the popula-
tion density of the resource or the predator, the greater the
tendency of the predator to move towards the resource. From
Figures 9 and 15, we observe that a high attraction favors a
greater concentration of both the top predators and the re-
source around the patches with the highest carrying capacity
of the resource; as the predation pressure decreases in the
other patches, they are occupied by the mesopredator. This
phenomenon becomes more acute if predation increases (see
Figure 14). It is also apparent that the larger q the greater the
concentration of the populations. A fact that seems counter-
intuitive is that an increase in the predation rate does not nec-
essarily lead to lower mesopredator densities; this is shown
in Figures 9 and 10, where even we observe a similar pattern
of the spatial distribution of the three species, the population
levels of the mesopredator are higher in 10 with c = 1.5 than
in 9, (c = 1.0); Possibly, this is a consequence of the fact that
the greater the predation, the lower the population of meso-
predators that arrive in the areas of greatest productivity of
the resource. The general findings shown in this paper could
be useful to the study of the biological factors that impact the
spatial distribution of species.
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(a2) u, t = 0.1 (b2) v, t = 0.1 (c2) w, t = 0.1

(a3) u, t = 0.5 (b3) v, t = 0.5 (c3) w, t = 0.5

(a4) u, t = 2.0 (b4) v, t = 2.0 (c4) w, t = 2.0

(a5) u, t = 4.0 (b5) v, t = 4.0 (c5) w, t = 4.0

(a6) u, t = 20.0 (b6) v, t = 20.0 (c6) w, t = 20.0

Figure 2: Evolution of the spatial distribution of the three species. e1 = 1.0,e2 = 1.0
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(a3) u, t = 1.5 (b3) v, t = 1.5 (c3) w, t = 1.5

(a4) u, t = 4.0 (b4) v, t = 4.0 (c4) w, t = 4.0

(a5) u, t = 20.0 (b5) v, t = 20.0 (c5) w, t = 20.0

Figure 3: Evolution of the spatial distribution of the three species. e1 = 1.0,e2 = 2.0

(a4) u, t = 2.0 (b4) v, t = 2.0 (c4) w, t = 2.0

(a5) u, t = 4.0 (b5) v, t = 4.0 (c5) w, t = 4.0

(a6) u, t = 20.0 (b6) v, t = 20.0 (c6) w, t = 20.0

Figure 4: Evolution of the spatial distribution of the three species. e1 = 1.0,e2 = 10.0

doi: 10.58560/rmmsb.v03.n02.023.08

https://doi.org/10.58560/rmmsb.v03.n02.023.08


11 of 19 CHEMOTACTICALLY INDUCED SEARCH AND DEFENSE STRATEGIES IN A TRITROPHIC SYSTEM Anaya, N. et al.

(a4) u, t = 2.0 (b4) v, t = 2.0 (c4) w, t = 2.0

(a5) u, t = 4.0 (b5) v, t = 4.0 (c5) w, t = 4.0

(a6) u, t = 20.0 (b6) v, t = 20.0 (c6) w, t = 20.0

Figure 5: Evolution of the spatial distribution of the three species. e1 = 10.0,e2 = 1.0

(a3) u, t = 2.0 v, t = 2.0 w, t = 2.0

(a4) u, t = 4.0 v, t = 4.0 w, t = 4.0

(a5) u, t = 20.0 v, t = 20.0 w, t = 20.0

Figure 6: Evolution of the spatial distribution of the three species. e1 = 1.0,e2 = 0.5
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(a1) u, t = 0.1 (b1) v, t = 0.1 (c1) w, t = 0.1

(a2) u, t = 2.0 (b2) v, t = 2.0 (c2) w, t = 2.0

(a3) u, t = 4.0 (b3) v, t = 4.0 (c3) w, t = 4.0

(a4) u, t = 20.0 (b4) v, t = 20.0 (c4) w, t = 20.0

Figure 7: Evolution of the spatial distribution of the three species.

(a2) u, t = 2.0 (b2) v, t = 2.0 (c2) w, t = 2.0

(a3) u, t = 4.0 (b3) v, t = 4.0 (c3) w, t = 4.0

(a4) u, t = 20.0 (b4) v, t = 20.0 (c4) w, t = 20.0

Figure 8: Evolution of the spatial distribution of the three species. The suitability of resource habitat is given by (12)

.
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(a1) u, t = 2 (b1) v, t = 2 (c1) w, t = 2

(a2) u, t = 4 (b2) v, t = 4 (c2) w, t = 4

(a3) u, t = 20 (b3) v, t = 20 (c3) w, t = 20

Figure 9: Contour plots of time evolution of the resource u, mesopredador v and top predador w at different times. q = 0.1, c = 1.0

(a1) u, t = 2 (b1) v, t = 2 (c1) w, t = 2

(a2) u, t = 4 (b2) v, t = 4 (c2) w, t = 4

(a3) u, t = 20 (b3) v, t = 20 (c3) w, t = 20

Figure 10: Contour plots of time evolution of the resource u, mesopredador v and top predador w at different times. q = 0.1, c = 1.5

doi: 10.58560/rmmsb.v03.n02.023.08

https://doi.org/10.58560/rmmsb.v03.n02.023.08


REVISTA DE MODELAMIENTO MATEMÁTICO DE SISTEMAS BIOLÓGICOS, Vol.3( 2023), No2, e23R05 14 of 19

(a1) u, t = 2.0 (b1) v, t = 2.0 (c1) w, t = 2.0

(a2) u, t = 4.0 (b2) v, t = 4.0 (c2) w, t = 4.0

(a3) u, t = 20.0 (b3) v, t = 20.0 (c3) w, t = 20.0

Figure 11: Contour plots of time evolution of the resource u, mesopredador v and top predador w at different times. q = 1.0, c = 1.5

(a3) u, t = 2.0 (b3) v, t = 2.0 (c3) w, t = 2.0

(a4) u, t = 4.0 (b4) v, t = 4.0 (c4) w, t = 4.0

(a5) u, t = 20.0 (b5) v, t = 20.0 (c5) w, t = 20.0

Figure 12: Contour plots of time evolution of the resource u, mesopredador v and top predador w at different times. q = 1.0, c = 2.5
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(a1) u, t = 2.0 (b1) v, t = 2.0 (c1) w, t = 2.0

(a2) u, t = 4.0 (b2) v, t = 4.0 (c2) w, t = 4.0

(a3) u, t = 20.0 (b3) v, t = 20.0 (c3) w, t = 20.0

Figure 13: Contour plots of time evolution of the resource u, mesopredador v and top predador w at different times. q = 10.0, c = .1

(a1) u, t = 2.0 (b1) v, t = 2.0 (c1) w, t = 2.0

(a2) u, t = 4.0 (b2) v, t = 4.0 (c2) w, t = 4.0

(a3) u, t = 20.0 (b3) v, t = 20.0 (c3) w, t = 20.0

Figure 14: Contour plots of time evolution of the resource u, mesopredador v and top predador w at different times. q = 10.0, c = 1.5
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(a1) u, t = 2.0 (b1) v, t = 2.0 (c1) w, t = 2.0

(a2) u, t = 4.0 (b2) v, t = 4.0 (c2) w, t = 4.0

(a3) u, t = 20.0 (b3) v, t = 20.0 (c3) w, t = 20.0

Figure 15: Contour plots of time evolution of the resource u, mesopredador v and top predador w at different times. q = 10.0, c = 1.0
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A APPENDIX

SPATIAL DISCRETIZATION

Variational formulation

We consider a general reaction-diffusion problem with Neu-
mann boundary conditions

−∆u+µu = f en Ω (13)
u(x,0) = u0(x) en Ω (14)

∂nu(x, t) = 0 en ∂Ω (15)

where function f ∈ C0(Ω) is regular, µ ∈ R. As it is usual
∂nu = ∇u ·n, where n is the exterior normal vector to ∂Ω.

A classic solution of the above problem (13)–(15) is a
function u : Ω̄ 7→ R, u ∈C2(Ω̄) which satisfies (13)–(15). In
order to facilitate the search of u we reformulate the problem
to find a equivalent solution.

Let v ∈C2(Ω̄). Multiplying (13) by v it is obtained

−v∆u+µuv = f v

Integrating on Ω

−
∫

Ω

v∆u dΩ+µ

∫
Ω

uv dΩ =
∫

Ω

f v dΩ (16)

Applying the Green Theorem∫
Ω

∇u ·∇v dΩ−
∫

∂Ω

(∇u ·n)v dS+µ

∫
Ω

uv dΩ =
∫

Ω

f v dΩ.

(17)
Since ∂nu = 0 for x ∈ ∂Ω, we have∫

Ω

∇u ·∇v dΩ+µ

∫
Ω

uv dΩ =
∫

Ω

f v dΩ. (18)

This expression is known as variational formulation of the
problem (13)–(15), see (Vidar, 2007). Notice that in (18) it is
only required that u,v ∈C1(Ω̄). Furthermore, they can even
be just continuous.

Discretization Finite Element Method

Let Hk(Ω) a Sobolev space and C1(0,T,C2(Ω̄)) is the
space of continuously differentiable functions from [0,T ] on
C2(Ω̄). Ωh is a polygonal approximation of Ω. We consider
a mesh Th of Ωh consisting of convex elements Ei ∈ Th, i ∈ I
, I ⊂ N.

Let {ϕ j(x,y)}1≤ j≤N be a base of Vh

uh(x,y, t) =
N

∑
j=1

ui(t)ϕ j(x,y)

vh(x,y, t) =
N

∑
j=1

vi(t)ϕ j(x,y)

wh(x,y, t) =
N

∑
j=1

w j(t)ϕ j(x,y)

x,y ∈ Ω, 0 ≤ t ≤ T . The basis ϕ j(x,y) are compact support
functions and we use the usual linear elements P1 defined on
triangles.

Parameter h represents the size of element Ei of mesh Th
and is defined as

h = max
Ei∈Th

diam(Ei),

as h 7→ 0, space Vh is closer to Hk(Ω).

SEMI-DISCRETIZATION OF TIME

Let
0 = t0 < t1 < · · · tN = T,

a partition of the interval [0,T ] with constant step dt = tm+1−
tm for all m ∈ {0, . . . ,N− 1}. The derivative with respect to
time is approximated using forward finite differences

ut =
um+1−um

dt
, vt =

vm+1− vm

dt
, wt =

wm+1−wm

dt

where um = u(x, tm),vm = v(x, tm),wm = w(x, tm).
By substituting the above approximation in Model (1) we

obtain that

um+1 = um +dt ·d0∆um+1 +dt ·αum+1(1− um+1

K(x,y)
)

−dt · bum+1vm+1

um+1 +a
,

vm+1 = vm +dt ·d1∆vm+1 +dt · γ bum+1vm+1

um+1 +a

−dt · cvm+1wm+1

vm+1 +d
−µvm+1 (19)

wm+1 = wm +dt ·d2∆wm+1 +dt ·β cvm+1wm+1

vm+1 +d
−dt ·ρwm+1−dt ·∇ · (χ2(vm+1,wm+1)∇vm+1).

This is the Implicit Euler Method which depends on both
(x,y) ∈Ω for each element Ei and the boundary conditions
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∇um+1 ·n = 0, ∇vm+1 ·n = 0, ∇wm+1 ·n = 0, m≥ 0. (20)

From the initial values u0,v0, and w0, we compute the next
iterations (u1,v1,w1), . . . ,(uN ,vN ,wN). The system (19) is
solved by FEM, assuming that u0,v0,w0 ∈C2(Ω̄), see (Dou-
glas and Dupont, 1970). To avoid some complications which
arise from the nonlinearity involved in (19), the terms cor-
responding to temporal variation are solved using a semi-
implicit Runge-Kutta method of second order. The two steps
of this computational process are depicted in the following.
First, the right side of equations (1) are rewritten as

F(u,v,w) = d0∆u+αu(1− u
K(x,y)

)− buv
u+a

,

G(u,v,w) = d1∆v+ γ
buv

u+a
− cvw

v+d
−µv, (21)

H(u,v,w) = d2∆w+β
cvw
v+d

−ρw−∇ · (χ2(v,w)∇v).

The first step of the RK–method of second order consists in
an one Euler step computed at central point of each time in-
terval.

um+1/2 = um +
dt
2
·F(um,vm,wm) (22)

vm+1/2 = vm +
dt
2
·G(um,vm,wm) (23)

wm+1/2 = wm +
dt
2
·H(um,vm,wm) (24)

In the second step, computations are made at time m+ 1
like

um+1 = um +dt ·F(um+1/2,vm+1/2,wm+1/2) (25)

vm+1 = vm +dt ·G(um+1/2,vm+1/2,wm+1/2) (26)

wm+1 = wm +dt ·H(um+1/2,vm+1/2,wm+1/2) (27)

Now we considered the diffusion in an implicit form, then
the schema becomes a semi-implicit one. For each step,
the equations are solved by applying the FEM Galerkin-Ritz
method described above.The same scheme of discretization
is applied to Model (2).
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