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Politicas Editoriales

1. Caracter: la revista Modelamiento Matematico de Sistemas
Biologicos (MMSB) es una publicacion en linea, de acceso
abierto, universal, gratuita y sin restricciones de circulacion
de sus contenidos. MMSB busca ser reconocida por su cali-
dad de contenidos y rigurosidad en los procesos de edicion
y publicacion.

2. Mision. Rev. model. mat. sist. biol. busca difundir trabajos
originales e inéditos que incrementen el conocimiento y com-
prension de sistemas bioldgicos a través del modelamiento
matematico como herramienta principal de analisis. Las areas
tematicas incluidas en la revista son:

e Dinamica de Poblaciones

e Sustentabilidad

e Biodiversidad

e Epidemiologia

e Enfermedades no infecciosas

*  Biotecnologia

e Biomateriales

e Neurociencia

e Genética

»  Fisiologia

»  Biologia celular

»  Entre otros temas de origen bioldgico que puedan ser
modelados y estudiados matematicamente

3. Vision. Rev. model. mat. sist. biol. promueve el acceso al
conocimiento de manera democratica y sin fines de lucro,
libre circulacién y acceso inmediato de sus articulos, siempre
que se cite adecuadamente la fuente.

Larevista busca valorizar la investigacion cientifica producida
en América Latina y el Caribe, aunque no de manera restrictiva
geograficamente, ofreciendo una plataforma de divulgacion
cientifica para los trabajos de investigadores de la region, sin
perjuicio de que se trata de una publicacion disponible para
los investigadores de todo el mundo.

4. Fecha y nimero de publicaciones anuales: Rev. model.
mat. sist. biol. publicara tres nimeros regulares por cada vo-
lumen, en los meses de: abril, agosto y diciembre de cada afio.

La Rev. model. mat. sist. biol. se reserva el derecho de pu-
blicar volimenes especiales que pueden ser dedicados a
una tematica especifica o vinculados a un evento cientifico.

5. Alcance idiomatico: Espafiol-Inglés.

6. Politica de derechos de autor, publicaciony acceso alos
contenidos: Rev. model. mat. sist. biol., Universidad Tecno-
l6gica Metropolitana como editora se reserva las atribuciones
de comunicacion y difusion segtn las practicas del derecho
de autor chilenas, y declara una politica de acceso abierto
(OA), bajo el principio de disponibilidad inmediata y gratui-
ta, bajo la licencia Creative Commons Reconocimiento 4.0
Internacional License (CC BY 4.0) (https://creativecommons.
org/licenses/by/4.0/), siempre que le sea reconocida la autoria
dela creacion original, a menos que se indique lo contrario.

La revista adhiere a los principios de Investigacion Abierta
(Open Science) y a los Principios FAIR (Findable, Accessi-
ble, Interoperable, and Reusable), para la gestion de datos
cientificos.

7.- Cargos por envio y/o publicacion articulos

La revista no tiene cargos por procesamiento de articulos
(APC).

La revista no tiene cargos por envio de articulos.

8. Paralos autores: se autoriza establecer copia en repositorios
institucionales o personales, de preprint o posprint, siempre
y cuando se cite la fuente o sitio institucional donde han sido
publicados originalmente. Véase Politicas de apertura de la
revista en: Sherpa Romeo AURA - Amelica

9. Para los lectores: se autoriza la reproduccion total o
parcial de los textos aqui publicados siempre y cuando se
cite debidamente la autoria y fuente completa, asi como la
direccion electronica de la publicacion.

10. La responsabilidad de sus autores/as y de las opinio-
nes expresadas no necesariamente reflejan la postura de la
editorial, la revista o de la Universidad Tecnologica Metro-
politana (UTEM).
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Las opiniones y hechos consignados en cada articulo son de
exclusiva responsabilidad de sus autores/as, asi como de la
idoneidad ética como investigadores.

Ademas, al enviar un trabajo a evaluar para publicacion,
hacen explicito que el manuscrito es de su autoria y que se
respetan los derechos de propiedad intelectual de terceros.
También es su responsabilidad asegurarse de tener las auto-
rizaciones para usar, reproducir e imprimir el material que
no sea de su propiedad/autoria (cuadros, graficas, mapas,
diagramas, fotografias, etcétera).

Cuando un autor(a) identifica en su articulo un error im-
portante, deberd informar de inmediato a los editores y
proporcionar toda la informacién necesaria para hacer las
correcciones pertinentes y/o elaborar una retractacién o
correccion en caso de que terceros detecten errores.

11. La responsabilidad de los editores

Decision de publicacion: garantizaran la seleccion de las
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Confidencialidad: se comprometen a la confidencialidad de
los manuscritos, su autoria y evaluacion, de forma que el ano-
nimato preserve la integridad intelectual de todo el proceso.
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Editorial Policies

1. Character. The Journal of Mathematical Modeling of
Biological Systems (MMSM) is an official publication of the
Metropolitan Technological University, published through
Ediciones UTEM.

2. Mission. MMSB seeks to disseminate original and unpu-
blished works that increase the knowledge and understan-
ding of biological systems through mathematical modeling
as the main tool of analysis. The subject areas included in
the journal are:

e Population Dynamics

e Sustainability

e Biodiversity

e Epidemiology

e Non-infectious diseases

e Biotechnology

e Biomaterials

e Neuroscience

e Genetics

e Physiology

e Cell biolog

 Among other topics of biological origin that can be
modeled and studied mathematically.

3. Vision. MMSM promotes access to knowledge in a demo-
cratic and non-profit manner, therefore the journal does not
charge authors for publication or access charges for readers,
nor does it restrict the free circulation of its articles (however,
the source must always be correctly referenced).

In addition, it seeks to value the scientific research produced
in Latin America and the Caribbean, offering a showcase for
the work of young researchers in the region, without prejudice
tothe fact thatitis a publication available to researchers from
all over the world and of all ages.

4. MMSB will publish an annual volume, with three issues
per volume, with a publication date in April, August and
December of each year.

MMSB will also publish special volumes that can be dedicated
to a specific topic or linked to a scientific event.

5. Language scope: Spanish-English.

6. Publication policy and access to content. MMSB has an
open access policy, under the principle of free availability, to
research products for the general public.

Under the Creative Commons Attribution 4.0 International
License.

7. For authors. it is authorized to establish a copy in institu-
tional or personal repositories, preprint or postprint, as long
as the source or institutional site where they were originally
published is cited.

8. For readers. the total or partial reproduction of the texts
published here is authorized as long as the authorship and
full source are duly cited, as well as the electronic address
of the publication.

9. The opinions expressed by the authors do not necessa-
rily reflect the position of the publisher, the journal or the
Universidad Tecnoldgica Metropolitana (UTEM).

10. Code of Ethics. the Journal adheres to the Code of the
Committee on Publication Ethics (COPE) to discuss and or
sanction all matters related to ethical aspects of the pu-
blication. See: COPE Principles of Transparency and Best
Practices in Academic Publications, available at: https://doi.
0rg/10.24318/cope.2019.1.13

11. Code of Ethics. Detection or prevention of plagiarism.
MMSB uses the University’s plagiarism detection system
(UTEM) (see https://www.urkund.com/es/), in order to
safeguard the relevance or originality of the content to be
published.
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SPECIAL NUMBER V2N2 - MMSB
MATHEMATICAL BIOLOGY AT SPRINGTIME
IN 29S53W

Diomar Cristina Mistro
Luiz Alberto Diaz Rodrigues

Presentation

This special issue consists of a collection of papers presented
at the workshop “Mathematical Biology in Springtime at
29S53W” (MBS29S53W). The meeting took place in the spring
2022, in Santa Maria, which is located at the geographical
coordinates 29S53W. It was part of the project “Cooperagao
Internacional Brasil-Alemanha em Ecologia Teérica” whose
main goal is the internationalization of the post-graduation
of Rio Grande do Sul. This project was supported by FAPERGS
(Fundacdo de Amparo a Pesquisa do Estado do Rio Grande do
Sul) -- a Rio Grande do Sul state foundation for supporting
science and research. The COVID-19 pandemics delayed the
workshop in one year and, for most participants, it was the
first in-person meeting after two years of confinement and
social distancing.

The MBS29S53W was aimed at undergraduate and graduate
students with the main goals of offering students the oppor-
tunity to get to know the state of the art and new trends in
Mathematical Biology, publicising the research produced
in the Rio Grande do Sul, giving the Brazilian students the
opportunity to attend high level talks and lectures, encoura-
ging undergraduate and graduate students to pursue research
and attracting new students to join the Mathematical Biology
Group in Santa Maria.

The meeting offered plenary talks, short-courses, a round
table and a poster section where the students presented their
works. Philip Maini (University of Oxford), Frank Hilker (Uni-
versity of Osnabriick), Wilson Castro Ferreira Jr (University
of Campinas) and Roberto Kraenkel (University of the State
of Sdo Paulo) were the in person speakers. Besides them,
Frithjof Lutscher (University of Ottawa), Mirjam Kretzschmar
(University of Utrecht) and Claudia Pio Ferreira (University
of the State of Sao Paulo) gave online talks.

Philip Maini opened the workshop with the plenary talk
“Modelling collective cell movement in development and
disease”.

The second speaker was Claudia Pio Ferreira who gave the talk
“Exploring the impact of temperature on the efficacy of repla-
cing the wild Aedes aegypti population by Wolbachia-carrying
one”. The online talk “Integrodifference equations for spatial
spread and invasions” was given by Frithjof Lutscher while
“Interplay between health related opinions, risk perception,
and epidemic dynamics in infectious disease models” was
the title of the talk of Mirjam Kretzschmar. Finally, Roberto
Kraenkel finished the meeting with the talk “Challenges in
modeling Covid-19 epidemics and lessons for the future”.

The event included two short-courses: “Elementary Mathe-
matical Models in Biology: Ruminations on Art and Craft”
and “Population dynamics in patches coupled by dispersal”
taught by Wilson C. Ferreira Jr and Frank Hilker, respectively.

Philip Maini and Frank Hilker discussed with the audience
about “Trends and Perspectives on Mathematical Biology” in
around-table mediated by Wilson Ferreira Jr. This discussion
resulted in an opinion paper written by the two speakers and
some of the participants who actively collaborated with the
round table. Finally, there was a poster section where the
students presented their work; five of them also composes
this volume.

The opinion paper by Hilker et al. (2023) address the pers-
pectives in mathematical biology. It discusses the biological
topics in the main stream of mathematical modelling, some
of the mathematical techniques currently in use and some
educational aspects of mathematical biology.

The COVID-19 pandemics have brought new challenges and
reinforced the importance of studying epidemiological mo-
dels. Three papers of this issue analyse infectious diseases.
The spatio-temporal dynamics of a SIRC-type diseases is
investigated by Marques and De Cezaro (2023).

Pitol et al. (2023) analyse the effects of vaccination in a ma-
thematical model for the Yellow Fever with migration.

The third paper on the epidemiology field considers an Auto-
mata Celular model to study the effects of confinement and
vaccination on the spatial spread of the COVID-19 epidemics
(Rossato and Meyer, 2023).

On a different subject, Oliveira et al. (2023) study the dynamic
interactions between proteins in the focal adhesion by using
the Chemical Master Equation.



Presentation

Finally, in Selau et al. (2023), the authors propose a Coupled
Map Lattice model to analyse the spatio-temporal dynamics
of a system of three interacting species: a resource species
and two consumers.

Acknowledgments
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NUMERO ESPECIAL V2N2 - MMSB
MATHEMATICAL BIOLOGY AT SPRINGTIME
IN 29S53W

Diomar Cristina Mistro
Luiz Alberto Diaz Rodrigues

Este niimero especial consta de una coleccion de articulos
presentados en el taller "Biologia matematica en primavera
en 29S53W" (MBS29S53W). El encuentro tuvo lugar en la
primavera de 2022, en Santa Maria, que se encuentra en las
coordenadas geograficas 29S53W. Formo parte del proyecto
“Cooperacao Internacional Brasil-Alemanha em Ecologia
Tebrica” cuyo principal objetivo es la internacionalizacion del
posgrado de Rio Grande do Sul. Este proyecto fue apoyado
por FAPERGS (Fundacao de Amparo a Pesquisa do Estado do
Rio Grande do Sul), una fundacion estatal de Rio Grande do
Sul para apoyar la ciencia y la investigacion. La pandemia de
COVID-19 retraso el taller en un afio y, para la mayoria de los
participantes, fue el primer encuentro presencial después de
dos afios de confinamiento y distanciamiento social.

El MBS29S53W estuvo dirigido a estudiantes de pregrado y
posgrado con los principales objetivos: ofrecer a los estu-
diantes la oportunidad de conocer el estado del arte y las
nuevas tendencias en Biologia Matematica, dar a conocer las
investigaciones producidas en Rio Grande do Sul, brindar a
los estudiantes brasilefios 1a oportunidad de asistir a charlas
y conferencias de alto nivel, incentivando a estudiantes de
pregrado y posgrado a realizar investigaciones y atraer nuevos
estudiantes para unirse al Grupo de Biologia Matematica en
Santa Maria.

El encuentro contd con charlas plenarias, cursos cortos, una
mesaredonda y una seccion de carteles donde los estudiantes
presentaron sus trabajos. Philip Maini (Universidad de Oxford),
Frank Hilker (Universidad de Osnabriick), Wilson Castro
Ferreira Jr (Universidad de Campinas) y Roberto Kraenkel
(Universidad del Estado de Sao Paulo) fueron los ponentes
presenciales. Ademas de ellos, Frithjof Lutscher (Universidad
de Ottawa), Mirjam Kretzschmar (Universidad de Utrecht) y
Claudia Pio Ferreira (Universidad del Estado de Sao Paulo)
impartieron charlas online.

Philip Maini inaugurd el taller con la charla plenaria “Mo-
delado del movimiento celular colectivo en el desarrollo y
la enfermedad”.

La segunda oradora fue Claudia Pio Ferreira quien dio 1a charla
“Explorando el impacto de la temperatura en la eficacia de
reemplazar la poblacion silvestre de Aedes aegypti por una
Wolbachia portadora”. La charla online “Ecuaciones de inte-
grodiferenciales para la propagacion espacial y las invasiones”
fue impartida por Frithjof Lutscher, mientras que “Interaccion
entre opiniones relacionadas con la salud, percepcion de
riesgo y dinamica epidémica en modelos de enfermedades
infecciosas” fue el titulo de la charla de Mirjam Kretzschmar.
Finalmente, Roberto Kraenkel finaliz6 el encuentro con la
charla “Desafios en el modelado de epidemias de Covid-19
y lecciones para el futuro”.

El evento incluyo6 dos cursos cortos: “Modelos matematicos
elementales en biologia: reflexiones sobre arte y artesania”
y “Dinamica de poblaciones en parches acoplados por dis-
persion” impartidos por Wilson C. Ferreira Jr y Frank Hilker,
respectivamente.

Philip Maini y Frank Hilker discutieron con la audiencia
sobre “Tendencias y perspectivas en biologia matematica”
en una mesa redonda mediada por Wilson Ferreira Jr. Esta
discusion resulté en un documento de opinidn escrito por
los dos oradores y algunos de los integrantes del ptiblico que
participaron activamente con la mesa redonda.. Colabor6 con
la mesa redonda. Finalmente, hubo una seccién de carteles
donde los estudiantes presentaron sus trabajos; cinco de ellos
también componen este volumen.

El articulo de opinion de Hilker et al. (2023) abordan las pers-
pectivas en biologia matematica. Analiza los temas bioldgicos
en la corriente principal de modelado matematico, algunas
de las técnicas matematicas actualmente en uso y algunos
aspectos educativos de la biologia matematica.

La pandemia de COVID-19 ha traido nuevos desafios y ha
reforzado laimportancia de estudiar modelos epidemioldgi-
cos. Tres articulos de este nimero analizan las enfermedades
infecciosas. Marques y De Cezaro (2023) investigan la dinamica
espacio-temporal de las enfermedades de tipo SIRC.

Pitol et al. (2023) analizan los efectos de la vacunacion en un
modelo matematico para la Fiebre Amarilla con la migracion.
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El tercer articulo en el campo de la epidemiologia considera
un modelo de Autémata Celular para estudiar los efectos del
confinamiento y la vacunacion en la propagacion espacial de
las epidemias de COVID-19 (Rossato y Meyer, 2023).

En otro tema, Oliveira et al. (2023) estudian las interacciones
dinamicas entre proteinas en la adhesion focal utilizando la
Ecuacién Maestra Quimica.

Finalmente, en Selau et al. (2023), los autores proponen
un modelo de celosia de mapas acoplados para analizar la
dinamica espacio-temporal de un sistema de tres especies
que interactan: una especie de recurso y dos consumidores.
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ABSTRACT

This communication summarises a “round-table discus-
sion” at a workshop held at the Federal University of Santa
Maria, Brazil, on trends and perspectives in mathematical
biology. Mathematical biology as a research field has seen
many changes over the past few decades. Starting mostly
from deterministic differential or difference equations, the
mathematical techniques applied to biology have diversified
to include stochastic processes, graph theory, topology,
combinatorics and many other areas of mathematics. The
complexity, heterogeneity and diversity of biological systems
represent both challenges and opportunities in modelling.
On the one hand, they require and nurture methodological
innovations. On the other hand, they allow models to explain
biological phenomena as emerging from multiple scales and
to elucidate biological mechanisms, thoughts and concepts
with the clarity of mathematics. All this makes mathemati-
cal biology an exciting and fruitful field. The present paper
discusses (1) key biological topics to be addressed in mathe-
matical modelling, (2) some of the mathematical techniques
currently in use and the need for further methodological
development, and (3) some issues in the training of the next
generation of mathematical biologists.

RESUMEN

Esta comunicacion resume una “mesa redonda” en un works-
hop celebrado en la Universidad Federal de Santa Maria, Brasil,
sobre tendencias y perspectivas en biologia matematica. La
biologia matematica como campo de investigacion ha experi-
mentado muchos cambios en las dltimas décadas. Partiendo
principalmente de ecuaciones diferenciales o en diferencias
deterministas, las técnicas matematicas aplicadas a la biologia
se han diversificado para incluir procesos estocasticos, teoria
de grafos, topologia, combinatoria y muchas otras areas de las
matematicas. La complejidad, heterogeneidad y diversidad
de los sistemas bioldgicos representan tanto desafios como
oportunidades en la modelizacién. Por un lado, requieren
y fomentan innovaciones metodologicas. Por otro lado,
permiten que los modelos expliquen fendmenos biologicos
que emergen de multiples escalas y dilucidan mecanismos,
pensamientos y conceptos bioldgicos con la claridad de las
matematicas. Todo esto hace de la biologia matematica un
campo apasionante y fructifero. El presente articulo discute
(1) temas bioldgicos clave que se abordaran en la modeliza-
cién matematica, (2) algunas de las técnicas matematicas
actualmente en uso y la necesidad de un mayor desarrollo
metodoldgico, y (3) algunas cuestiones en la capacitacion de
la proxima generacion de biomatematicos.

Introduction

The field of mathematical biology (here we will use the
term “biology” in a very broad sense, incorporating
medicine, ecology, epidemiology, etc.) has grown consi-
derably over the past years from a research area practised
by a few visionary pioneers to a well-established sub-field
of mathematics that is now taught in most universities
worldwide. The type of research done has also changed
beyond all recognition (see, e.g., Levin et al., 1997; Co-
hen, 2004; May, 2004; Reed, 2004, 2015; Maini, 2023).

Mathematical modelling is very high on the radar now due
to the COVID-19 pandemic. Epidemic modellers around the
world have worked and continue to work on state-of-the-art
models to predict the course of the pandemic, assess impact
scenarios and compare exit strategies. At the beginning of the
pandemic, knowledge about SARS-CoV-2 was virtually
non-existent, which posed major challenges to modellers,
public health officials, politicians and other decision-makers
alike. With mathematical models and simulations playing a
prominent role in the response to the pandemic, concepts
like exponential growth, R values and herd immunity entered
the discussions of the broader public, some modellers also
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played an important role influencing public opinion. Thus,
the field of mathematical modelling is acknowledged by
society probably more than ever.

Atthe same time, biodiversity and ecosystems are in peril due
to global change, which is occurring at unprecedented rates
(e.g., Pereira et al., 2010). To make predictions in a changing
world, process-based models are required. For mathematical
biology these times are, therefore, as important as challenging,
and thisis further amplified by the availability of increasingly
voluminous, varied and quickly processed data, by expanding
computer power and by advents in computational algorithms.

This perspective, inspired by a “round-table” discussion
at the workshop Mathematical Biology in Springtime at
29S53W,* aims to highlight three key aspects of the subject
of mathematical biology going forward. First, we will put
forward what we think are some key scientific topics to be
addressed using mathematical modelling. Second, we will
discuss some of the mathematical methods that are being
used now and the extensions required. Third, we will focus
on the type of training needed for young people coming into
mathematical biology, as well as ways to keep expanding
this field, which, although it has grown significantly, is still
comparatively small when compared with other areas of
science (cf. Reed, 2015).

TOPICS

As we indicated in the Introduction, the recent research
activities in epidemiological modelling due to the COVID-19
pandemic are probably unparalleled in history. Yet, the pan-
demic proved challenging in many regards. For example, the
epidemic curves looked rather different from what simple,
off-the-shelf epidemic models predict. Many variables,
including age structure, differences in susceptibility or
heterogeneity in the exposure to the virus (often related to
socio-economic factors) and individual behaviour regarding
the adoption of protective measures impact the course of the
pandemic. Modellers must take into account limited access
to information, difficulties in model validation, uncertainties
in measurements and fundamental model limitations, not
only as good scientific practices, but also as important caveats
when conveying model predictions and possible scenarios
to the media and general public.?

The explosion in the interest in the field of epidemiological
modelling also led to the integration of many researchers from
adjacent fields keen to bring in their expertise. Dangerfield
et al. (2023) describe how UK institutions coordinated many
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research activities including Virtual Study Groups,? Scientific
Advisory Boards to government* and Rapid Review Groups,®
which provided rapid assessments of the emerging research
and assisted government advisory groups.® A wide range of
similar initiatives or modelling “hubs” emerged in many other
countries as well (e.g. Reich et al., 2022).

More generally, consortia of research groups organised
around a certain scientific problem can convey a multitude
of benefits such as coordinating research activities, collec-
ting and curating data, and leveraging research networks or
software products. Such organised research networks allow
rapid development of models in large numbers, which frees
researchers from having to rely on a single model; a risky
bet. With multiple models at hand, it is possible to compare
outcomes under various scenarios from different standpoints,
which helps to identify inconsistencies and convergences
between models. This helps to either promote debate between
research groups or build consensus and deliver collective as-
sessments. Such model intercomparison projects have along
tradition in climatology (Cess et al., 1989) and are featured
prominently in IPCC (Intergovernmental Panel on Climate
Change) assessment reports (Coupled Model Intercomparison
Project). Similar initiatives are underway for biodiversity re-
search (Inter-Sectoral Impact Model Intercomparison Project)
in the context of IPBES (Intergovernmental Science-Policy
Platform on Biodiversity and Ecosystem Services).

Epidemic modelling is very likely to remain a topical issue,
given the number of emerging infectious diseases in recent
years (e.g., West Nile virus in 1999, SARS-CoV in 2003, HiN1
in 2009, MERS-CoV in 2012, Ebola in 2013, Zika in 2016) and
increased cross-species transmissions due to global change.

The field of ecology is at the forefront of studying the conse-
quences of the ongoing rapid global environmental change.
According to IPBES (2019), the main direct drivers of biodi-
versity loss are land and sea use change, direct exploitation
of organisms, climate change, pollution and invasive non-
native species. They pose major damage, threats and risks
to ecosystem functioning and services as well as production
of vital goods (Millennium Ecosystem Assessment, 2005).
There is increasing recognition of the existence of ecological
regime shifts, in which ecosystems abruptly and irreversibly
move from one state to another under supercritical forcing
(Scheffer et al., 2001). The planetary boundary framework
attempts to globally aggregate the anthropogenic impact on
nine processes and relate them to sustainable environmen-
tal limits (Steffen et al., 2015). These processes are climate
change, biogeochemical (nitrogen and phosphorus) flows,
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land-system change, freshwater use, aerosol loading, ozone
depletion, ocean acidification, loss of biosphere integrity,
including functional and genetic biodiversity, and introduc-
tion of novel entities, such as toxic chemicals and plastics.
With the increasing societal and political recognition of
global change, ecological models are increasingly aiming at
‘anticipatory’ rather than ‘explanatory’ predictions (Mouquet
et al., 2015; Houlahan et al., 2017; Maris et al., 2018). On
the basis of theoretical and empirical advances, ecological
models progressively incorporate biological mechanisms
rather than relying solely on statistical descriptions (e.g.
Urban et al., 2016; Pilowsky et al., 2022). Yet, there is still no
consensus emerging regarding the drivers of species richness
and ecosystem functioning (Loreau, 2010). When addressing
questions about environmental change, models need the
ability to project into novel, future conditions (Evans, 2012).
This requires not only a solid mechanistic understanding
(Mouquet et al., 2015), but also underlines the importance
of model transferability, i.e., how well models generalise to
new contexts (Houlahan et al., 2017; Yates et al., 2018).

In developmental biology, advances in image analysis and
data collection are revealing the complexities underlying
cellmovement and spatial patterning. These, in turn, provide
challenges to experimentalists and modellers alike, who aim to
develop a mechanistic understanding of how processes acting
across a vast range of spatial and temporal scales combine
to produce the cell and tissue level behaviour that we see.
Understanding developmental biology is not only of intrinsic
scientific interest, it can also help us develop therapies for
developmental diseases. For example, in early development,
neural crest cells delaminate from the neural tube and migrate
long distances before they differentiate into key tissues in the
body. If this process does not occur properly, it can lead to
developmental deformities (the so-called neurocristophies,
66 of which have been identified) (Vega-Lopez et al., 2018).
A full understanding of this collective migratory behaviour
would allow us to understand the mechanisms and therefore
suggest ways to combat developmental diseases. Moreover,
these cells have many mechanisms in common with those
of cancer cells, so an understanding of how these cells are
controlled in normal development suggest novel therapies
(e.g., Gallik et al., 2017).

The abstract nature of mathematics allows for ideas from
one area of science to be translated to other areas. A striking
example of this is the employment of mathematical mode-
lling ideas developed in the context of ecology in cancer cell
dynamics. Animal competition models, for example, the clas-
sical Lotka—Volterra model (originally proposed for chemical
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reactions) are now being used in adaptive therapy. Here, the
competitors are drug-sensitive and drug-resistant cells. The
idea is that, rather than using a drug at the standard of care
(maximum tolerated dose) that will kill off all the drug-sen-
sitive cells, allowing the resistant cells to grow unbounded,
using the drug more sparsely by having “drug-holidays”,
maintaining the tumour at a controlled size, will allow the
sensitive cells to compete with the resistant cells. In this
setting, mathematical modelling is being used to test out
different therapeutic strategies (see, for example, Strobl et
al., 2021), and this is a place where ideas from reinforce deep
learning can be employed to modify treatment in an ongoing
way. Indeed, more generally, mathematical modelling is now
being used to inform drug design and extrapolation from
the laboratory to the clinic (see, for example, the review by
Kondic et al., 2022).

To build models capable of simulating therapeutic
interventions in human patients, different interconnected
processes have to be taken into account. Infectious diseases
and cancer are good examples of how processes in different
systems and on different scales (for example, intracellular
reactions, intercellular communication, cell migration, and
potentially the metabolism in organs far from the tissue site)
depend on each other and determine the outcome of the
disease. Different approaches may be used to model each
temporal and spatial scale, as well as different parts of the
human body. Although model interfacing is becoming less
challenging (e.g., Zhou, 2014), we lack a standard framework
to couple, merge and switch models. A rigorous procedure
for multiscale modelling would leverage the development
of powerful simulations able to accurately test and calibrate
therapeutic interventions in human patients.

Advances in computing power have led to “digital twin”
technologies, where in many industries now computer si-
mulations are used to predict how equipment will perform.
A key question is, can this technology be used to develop
human digital twins? This is an area of research that is now
being pursued in many different areas of medicine (see, for
example, Laubenbacher et al., 2022).

As data collecting technologies advance, we are now on the
cusp of being able to fit models to data to acquire parameter
values. This is now pushing the statistical frontiers of parame-
ter estimation and identifiability (see, for example, Browning
et al., 2020). Moreover, ideas from persistent homology are
now being used to characterise spatial data (see, for example,
McGuirl et al., 2020; Skaf and Laubenbacher, 2022).
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MATHEMATICAL METHODS

Classical approaches in mathematical biology focus on low-di-
mensional and deterministic systems, ignoring the comple-
xities of stochasticity and nonlinear dynamics. Traditional
mathematical tools involve ordinary and partial differential
equations as well as difference equations. Mathematical bio-
logy today goes beyond linear theory and standard nonlinear
systems to highly complicated nonlinear systems. There are
advances in coarse graining, relating fully nonlinear systems,
and in approaches involving agent-based models, network
and graph theory, boolean analysis, topological data analysis,
statistics, probability theory and stochastic and branching
processes, to mention a few. Mathematical biology is now
both an inter- and intradisciplinary field.

Artificial intelligence (AI) and machine learning (ML) approa-
ches are being increasingly used. It is worth noting that Al
is based on biology (e.g., neural networks), so it is per se an
example where biology and mathematics meet. ML models
require large amounts of data; they base their predictions
on going through databases of inputs and outputs of a gi-
ven problem. Their results can be faster and more accurate
compared to classical statistical methods. More challenging,
however, is to gain understanding of the causal mechanisms.
ML and mechanistic modelling are therefore often seen as
different paradigms, but they can complement each other
in their methodological strengths and weaknesses (Baker et
al., 2018). The coupling of ML and mechanistic models into
hybrid approaches provide major opportunities (Reichstein
et al., 2019). Examples include improved model paramete-
risations or the emulation of computationally challenging
process-based models by ML algorithms. Also, mechanistic
“sub-models” with little theoretical support can be replaced
by data-driven ML models; for example, in agent-based
systems the decision-making of individual agents based
on input from the environment can follow ML models (e.g.,
Zhang et al., 2021).

A digital twin is, as already indicated, a dynamic digital re-
presentation of a real-life system (e.g., cells, tissues, organs
or even the natural environment) (Madni et al., 2019). With
automatic data flow between the digital and biological object,
this allows a real-time monitoring and prediction of systems,
with applications especially in medicine and biotechnology.
This is another example where multi-scale aspects are impor-
tant. Relevant spatial scales can range from the molecular to
the ecosystem level. Temporal scales can range from protein
processes to the billions of years of evolution of life on Earth.
At each level, collective dynamics emerge from the behaviour
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of individual units. Despite considerable advances in mul-
ti-scale mathematical biology, our understanding of these
phenomena is still far from complete (e.g., Eftimie, 2022).

The dynamical systems traditionally studied in mathemati-
cal biology are usually autonomous and smooth. However,
non-smooth dynamical systems become prevalent in the
presence of management actions or policy instruments. For
instance, pest control programs are triggered beyond certain
economic injury levels, harvest moratoria come into place
when the harvested population size drops below a critical
level or the use of pesticides, fertilisers or irrigation may
be forbidden if environmental indicators become flagged.
Non-smooth dynamical systems can be considerably more
complex in their dynamics than smooth ones. Consider, for
example, the transition from regular dynamics to chaos when
varying a system parameter in a certain direction. In smooth
systems, this transition generally occurs in a sequence of
bifurcations, often called a route to chaos (e.g. Anishchenko
et al., 2014). In non-smooth systems, by contrast, this tran-
sition can take place in a single bifurcation (di Bernardo et
al., 2008; Avrutin et al., 2019). Such bifurcations can give rise
to dynamical structures entirely different from the ones in
smooth systems.

Non autonomous systems occur when there is periodic
forcing (e.g., parameters influenced by seasons or circadian
rhythms) or a change in environmental conditions such as
temperature or precipitation. The latter is often modelled
in the form of parameters that evolve or are ramped in a
linear or accelerating trend. Just like seasonal forcing can
induce complex dynamics, simple trends in parameters due
to a changing world can cause rate-induced critical transi-
tions or track system states that are unstable in a constant
environment (e.g., Siteur et al., 2016; Vanselow et al., 2019;
Arumugam et al., 2021).

When studying the human impact on biological systems,
the human influence is often encapsulated in the form
of a simple parameter (e.g., a harvest rate or the average
vaccination coverage in a population). Conversely, in many
socio-economic studies dealing with biological systems, the
latter are often simplified to almost static objects (see also
Shin et al., 2022). For a full account of the mutual feedbacks
between the biological and socio-economic domains, howe-
ver, one has to take into account the coupled dynamics. This
requires connecting biological dynamics with human and
social sciences, for which sociology, economics, behavioural
psychology, law and other areas come into play. Mathematical
methods that can be used in this context include, for example,

18



Opinion article

evolutionary and differential games, agent-based models and
optimal control. Of course, they also deal with different time
scales (e.g., slow-fast systems, singular perturbation analysis)
and spatial variation (e.g., reaction-diffusion or integrodi-
fferential equations, nonlocal effects), to mention some of
the complexities involved. Such coupled social-ecological
systems are fascinating in their own right (e.g., Levin et al.,
2013; Galvani et al., 2016). They also play an increasing role in
behavioural epidemiology. Individual decision-making, social
learning and the spread of (mis-)information are key factors
in the adoption of preventive measures such as vaccination,
social distancing and face masks. Consequently, the spread
of infection and the success of public health programmes are
affected by individual behaviour (see the reviews by Funk et
al., 2010; Chang et al., 2020).

EDUCATION AND TRAINING

Mathematical biology will have a bright future with new gene-
rations of scientists that have expertise in both mathematics
and biology, i.e., “empiricists with stronger quantitative skills”
and “theoreticians with an appreciation for the empirical
structure of biological processes” (Hastings and Palmer, 2003).
Universities, however, are built on disciplines. Yet, many of
the most exciting areas in science are interdisciplinary. How
do we overcome the barriers between disciplines and, indeed,
within disciplines (intra-disciplinary)? One way to achieve
this in graduate education are Centres for Doctoral Training.
These are externally funded PhD programmes at universi-
ties in the UK and they have been designed to strategically
increase a university’s capacity in interdisciplinary research,
especially at the interfaces between traditionally organised
departments. Similarly, Research Training Groups funded by
the German Research Foundation promote innovative and
often interdisciplinary PhD programmes at German univer-
sities. These and other externally funded initiatives have
proven to stimulate lasting changes in university structures.

Such interdisciplinary programmes also promote students
in learning the “language” of the other discipline, while
being anchored in a home discipline. There will always be
some concern about juggling interdisciplinary breadth and
intradisciplinary depth. This is something for which tailored
solutions can be found in individual development plans?,
enlisting the supervisor(s)’ experience and depending on
the nature of the research project and the student’s needs.

In mathematical biology education more generally, there has
been an enormous spectrum of initiatives and considerable
changes in the past 1-2 decades. An impressive collection of
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these changes are summarised in the review by Jungck et al.
(2020). Many, if not most, major research universities now
have courses on mathematical biology; some universities
even offer degree programmes in this area. However, the
majority of universities probably still lack critical mass to offer
courses or projects in mathematical biology that build upon
each other and could thus reinforce learning. Furthermore,
existing courses in mathematical biology are often inacces-
sible to students who have not yet completed the classical
prerequisite courses, e.g., in linear algebra and (multivariable)
calculus. A course design with such prerequisites can be
an impediment to attract interested students from nearby
disciplines (cf. Miller and Alben, 2012).

A major “asset” of mathematical biology is the high motiva-
tion of students to learn about applications of mathematics
in biology, i.e., in living systems to which they can intuitively
relate. Reed (2015, p. 1175) writes:

“Most people acknowledge the traditional important
applications of mathematics to physics, from the motions
of the planets to quantum mechanics, nuclear fission and
the bomb, and fluid flow over airplane wings. Unfortu-
nately, most people just aren’t very interested in physics
(Voltaire had it right), so they acknowledge the importance
but aren’t that moved. How about the applications of
number theory to cryptography? Again, everyone sees
that it is important to have secure communications, but
they’re not very interested in how it gets done. Leave it
to the geeks! But biology is a different story. Everyone
is interested in his or her own body and how it works.
Everyone wants to be free of disease and live a long time.
Everyone (well almost everyone) knows that we’d better
be good stewards of our ecosystems or we and our children
are doomed. So, when you tell them how mathematics is
contributing, they are really interested. And this has the
potential, in the long run, to greatly improve the public
perception of mathematics.”

To get prospective students (and also the general public)
more interested in mathematics and its applications, there
are a host of outreach activities. For example, universities
or departments organise Open Days, where students and
lecturers show how much fun mathematics is and for what it
can be “used”. In some countries, including the UK, there is
an established tradition of TV programmes with researchers
or educators explaining science. More recently, children in-
creasingly use social media platforms to complement their
learning with short video tutorials, some of which point out
modern applications of mathematics. To reach out to school
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teachers, Seshaiyer and Lenhart (2020) describe a number
of modelling activities, in which teachers have engaged via
professional development programmes and which they have
incorporated in the classroom. For undergraduate students,
there are offers of summer research opportunities, interns-
hips, workshops or bursaries, which often motivate them to
pursue mathematical biology in their graduate studies (e.g. de
Vries and Hillen, 2008). Undergraduate research experience
programmes have also been run by the Mathematical Bios-
ciences Institute and the National Institute for Mathematical
and Biological Synthesis. Both institutes have, more broadly,
actively supported mathematical biology through workshops,
working groups, visitor programmes, fellowships, education
and outreach programmes. Synthesis centres have emerged
in the past two decades and created community-oriented
research infrastructure (Baron et al., 2017).

CONCLUSIONS AND OUTLOOK

As a scientist, it is hard enough to be an expert in one area.
To be an expert in two areas is very difficult. So a key aspect
isbeing able to communicate with researchers in other disci-
plines. This implies having enough knowledge to understand
what scientists in other disciplines are talking about. Another
key aspect is being able to communicate within your own
discipline. For instance, there are so many areas of mathe-
matics coming together in biology now (e.g., from dynamical
systems over networks to group theory) that it is impossible
to be an expert in all of these areas. Similarly, biology itself
is so diverse that its research fields are fragmented (cf. Reed,
2004). Mathematical biologists therefore need both intra- and
interdisciplinary competencies.

Considering all the changes in mathematical biology that
happened over the last 40 or so years, it is difficult to predict
where the field will be in 10-20 years’ time. What seems
clear is that, on the one hand, biology continues to provide
hard challenges for mathematics because of the multiple
temporal and spatial scales, the heterogeneity of individuals
and evolutionary dynamics. In addition, the enormous data
streams in all areas of biology, as well as the pace at which
computational predictions grow faster than our understan-
ding of biological systems, will require new mathematical
developments. On the other hand, there has been a tighter
integration of mathematical biology with experiments over
the past years. This can be seen, for example, in the growing
number of examples where mathematicians are integrated
into clinics and biological departments. At the same time,
the progress in biology increasingly requires researchers to
use quantitative skills. Biology is becoming so sophisticated

Current trends and perspectives in mathematical biology
https://doi.org/10.58560/rmmsb.v03.n02.023.10

that researchers essentially cannot escape computation and
advanced mathematics. Many biology journals nowadays
require theory and modelling in addition to data. And they
sometimes even feature mathematical approaches as cover
articles—something unheard of a while back.

Progress in biology will depend on our ability to formulate
theories, for which mathematics provides the quintessential
clarity (Cohen, 2004; May, 2004). Therefore, “simple” theore-
tical models® also continue to be relevant when they capture
the mechanistic essence of a complex system, improve our
understanding of biological phenomena, and provide novel
insights or suggest new experiments (e.g., Segel and Edels-
tein-Keshet, 2013). They can influence the way we understand
biological systems and also have an impact on decision-making
and management (e.g., DeAngelis et al., 2021).
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Recall the almost overwhelming rate of posting of new
preprints during the course of the pandemic.
Individual development plans are mutual agreements
between a graduate student and the supervisor(s). They
are intended to identify needs in training, resources or
research infrastructure. They clarify responsibilities
of both student and supervisor(s), and are thought to
improve orientation and transparency in the student’s
qualification process.

Sometimes also called generic, strategic or stylized
models; see Evans et al. (2013) and references therein
for terminology.
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ABSTRACT

In this work, we analyze the spread of an infectious disease in a not necessarily homogeneous multipopulation that interacts
and is distributed in a discrete two-dimensional lattice (network) that acquires only partial immunity to the circulating stain.
We use the solution properties of the proposed model to motivate the effects of including space in the dynamics. We show
that the dynamics is largely influenced by the topology of the interactions between the different populations. The theoretical
results are investigated numerically.

Keywords:
Partial immunity, Multi-Population SIRC, Spatially distributed, Coupled Map Lattice (CML)

RESUMEN

En este trabajo analizamos la propagacién de una enfermedad en una multipoblacién no necesariamente homogénea que inter-
actda y se distribuye en una red discreta bidimensional que adquiere solo inmunidad parcial a la mancha circulante. Usamos
las propiedades de solucidon del modelo propuesto para motivar los efectos de incluir el espacio en la dindmica. Mostramos
que la dindmica estd influenciada en gran medida por la topologia de las interacciones entre las diferentes poblaciones. Los
resultados tedricos se investigan numéricamente.

Palabras Claves:

Inmunidad parcial, SIRC multipoblacién, Distribucién espacial, Red de mapas vinculados
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SOME EFFECTS A MULTI-POPULATION SIRC MODEL

Chaves Marques, J et al.

1 INTRODUCTION

nfectious diseases are caused by infectious agents or
I pathogens, such as bacteria, viruses, and fungi, which
make their host sick. Most of these pathogens can undergo
genetic mutations, known as variants or mutating strains,
that increase their spread power, resistance, or pathogenic-
ity (ability to cause symptoms), virulence (intensity of host
harm), and risk to the human population, see, for example,
Hethcote (2000); Casagrandi et al. (2006) and references
therein.

The emergence of such mutating strains makes it possi-
ble for contagion to occur again even if the host has already
had contact with the virus, as the immune system does not
recognize these variants. In this situation, the host acquires
only temporary immunity, also known as cross-immunity,
e.g. Casagrandi et al. (2006). Infectious diseases with the
ability to mutate strains include the Influenza-type and the
Sars-Cov-2, e.g., Andreasen (2020); Grifoni et al. (2020);
Casagrandi et al. (2006) and references.

Since the pioneer work of Bernoulli (1760), mathematical
models have gained more and more visibility as a tool for
testing biological hypotheses in disease dissemination. Par-
ticulary, the effects of their strain mutations over time, for
example, Diekmann et al. (1995); Casagrandi et al. (2006).

Once most infectious diseases pass from an infected host
to a susceptible one due to some kind of contact, the model
prediction will strongly depend on the probability of contact
between susceptible and infected individuals. If the popula-
tion is assumed to be homogeneous, that is, the probability of
contact between susceptible and infectious individuals is the
same in the total population, then the so-called SIRC model
(Susceptible, Infected, Recovered, Cross Immune), proposed
in Casagrandi et al. (2006), has become a well-accepted
model that includes the assumption of cross immunity (a
proportion of individuals that acquire only partial immunity
to the undergoing disease Casagrandi et al. (2006)) over the
well-known SIR-type models Hethcote (1989, 2000); Brauer
et al. (2019).

Most populations are not well mixed due to factors such as
geographical and social barriers, social and work activities,
and public transportation, to name a few. As a result, the
contact probability among individuals in the total population
is non-homogeneous. However, the nonhomogeneous nature
of population mixing does not mean that this is a random
process; see Sattenspiel and Dietz (1995) and the references
therein. Nonrandom mixing among spatially distributed sub-
populations has many consequences for the outcomes of dis-
ease spread, for example Sattenspiel and Dietz (1995); Lazo
and De Cezaro (2021); Rossato et al. (2021); Marques et al.
(2022a) and references therein.

A common approach to analyzing the spatial spread of in-
fectious diseases is modeling by discrete temporal popula-
tion models, or metapopulation models, for example Rossato
et al. (2021); Brauer et al. (2019); Marques (2019), and ref-
erences therein. Although there are a significant number of
recent references in the literature, for example, Brauer et al.

(2019) and references therein, continuous-time mathematical
models with spatially distributed populations are less com-
mon then discrete epidemiological models.

In Sattenspiel and Dietz (1995), the authors investigate
the effects of migration dynamics coupling in a continuous-
time multi-population SIR model. In Lazo and De Cezaro
(2021) and Marques et al. (2023) the emerging of a plateau-
like shape of the infected population is analyzed due to the
mixed interaction in a multi-population SIR model with-
out migration. In Gomes and De Cezaro (2022), a multi-
population SIRD-type model was proposed to analyze the ef-
fects of COVID-19 on an age-distributed population as a con-
sequence of the reopening of schools. The well-posedness
and numerical simulations for a fractional SIRC model with
two populations that interact were presented in Maurmann
et al. (2023). The simulations presented in Maurmann et al.
(2023) suggest that the existence of immunological memory
in both subpopulations induces a favorable epidemiological
situation, with fewer infections and fewer cross-immunities.
In Marques et al. (2022b), the authors analyze a multi-
population SIRC type model numerically. Numerical simu-
lation scenarios were analyzed in which the effect of disease
reintroduction after a period of time was simulated, simulat-
ing the emergence of a new strain. The simulations presented
show a tendency to continue to grow in cross-immunity due
to the reinfection.

Main contributions and paper organization: In this
contribution, we explore the effects of inclusion of space
in the diseases dynamics of the SIRC-type multipopulation
model. The proposed SIRC-type model under investigation
assumes the existence of different (not necessarily homoge-
neous) multipopulation interacting and distributed in a dis-
crete two-dimensional grid (network). We used the smooth-
ness and monotonic behavior of the solution of the SIRC
model with multiple populations to show that the spread ve-
locity and intensity of the disease in the network are mono-
tonically dependent on the neighborhood topology (denoted
by V; j, see below) and the intensity of the interaction (de-
noted by ﬁl » see below). The theoretical results are exam-
ined numerically, providing some clues to the mechanisms of
disease spread, loss of host immunity, or partial transient im-
munity in inhomogeneous populations. Understand the dy-
namics behavior of diseases in spatial distributed and non-
homogeneous populations are essential for surveillance by
public health authorities, who propose preventive measures
and vaccination strategies to mitigate the impact of an emerg-
ing disease.

In Section Model description and its well-posedness, we
present the spatially distributed multipopulation SIRC model
and prove its well-posedness. In Section The effect of intro-
ducing space in the disease dynamics, we used the behavior
trajectory and the smoothness properties of the existing so-
lution for the proposed model to motivate the effects of the
introduction of space in the dynamics of diseases. In par-
ticular, we show that the diffusion velocity and intensity of
diseases are monotonically dependent on the neighborhood
topology and interaction intensity between the distinct popu-
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lations in the lattice. The results are numerically verified in
Subsections Scenario I and Scenario 2.

2 MODEL DESCRIPTION AND ITS WELL-
POSEDNESS

We assume the existence of a two-dimensional lattice
(nomenclature derived from the theory of Coupled Map Lat-
tice (CML) Marques (2019), where each patch (also known
as site pixel or cells) (x;,x;) is represented by integer co-
ordinates (with x; = is, x; = js, where s is the size of the
site), for i € {1,--- ,k}, j € {l1,---,n}. In each one of the
(n x k) patches is the home of a distinct, spatially distributed
subpopulation, in which N; ; represents the individual’s den-
sity (which corresponds to the total number of individuals in
the site). Furthermore, in each of the patches (i, ), the den-
sity of individuals N;; in the subpopulation is proportion-
ally distributed, at any time ¢ > 0, in the susceptible com-
partments S; ;(¢), infectious (infected) J; j(r), recovered (re-
moved) R; ;(¢) and cross-immunity C; j(). In this case, the
proportional cross-immunity of the population refers to indi-
viduals who have acquired partial immunity but are suscep-
tible to any mutation of the circulating stain within a short
period of time. There is no migration of the population from
one site to another, in contrast to the approach in Sattenspiel
and Dietz (1995). The infection might occur even in such a
situation, due to the interaction between subpopulations dur-
ing work hours or in public transport. But at the end of the
day, everyone is back at his home site, where infections are
reported. In other words, the assumption of no migration
is satisfied by considering that the interaction between dis-
tinct subpopulations occurs in an infinitely small time step
relative to the time of the disease dynamics ¢, such that indi-
viduals from different populations interact and return to their
reference sites faster than the time r — ¢ 4 A¢ of the disease
dynamics.

Therefore, the population N; ; at each site remains constant
for any time r > 0. The disease is transmitted from infected
individuals to susceptible individuals by the following mech-
anisms: i) If they belong to the same site, then transmission
is proportional to the constant contact rate f3; ; > 0, ii) An-
other source of transmission occurs by contact between sus-
ceptible individuals at the site (i, j) with infected individuals
in the neighborhood V; ; := {sites (7, ) : (i, /) # (i,j)}. We
assume that the transmission between individuals of differ-
ent populations is proportional to the constant contact rate
B;;>0if (i,j) €V;jor B;;=0if (i,]) ¢ Vi j. Therefore, the
neighborhood V; ; determines the topology of contact among
different subpopulations in the network, and the parameter
Bl H is related to the intensity of interaction with the nearby
population.

In the following, we represent the proportion of the in-
fected neighborhood as

1l := Z ﬁ;j];j(l‘) (1)

l:fEVtZ,j

Hence, S; ;11 is the probability that susceptible individuals

from the site (i, j) become infected due to contact with indi-
viduals from some of neighboring sites in V; ;, with rate of
contagious f5; .

We assume that disease dynamics is modeled by a spatially
distributed multi-population SIRC-type model, with a nor-
malized and constant total population ; ;. Using the mass-
action law, the dynamics is given by

Sij = Mij(Nij—Sij) = Sij (Bishij+11) +%4Ci

L j = Si.j (Bi.jli,j +11) + 01, 3B; ;Ci i j — (Wi j + 06 )i

Rij=(1-0,)Bi;Cijlij+ i jlij— (ij+ 8 )R (2)

Cij = iR j— B iCijhij— (Wi +%.)Cij-

In (2), the parameters ¢;; > 0,9;; > 0,7, ; > 0 are the
inverse of the time that any individual remains in the com-
partments /; ;, R; ; and C; ;, respectively, for i = 1,--- ,n and
Jj=1,---k. The parameter o;; is the probability of rein-

fection, while the parameter y; ; > O represents the mor-
tality/birth rate, which we assume to be equal for all sub-

populations.

Furthermore, the model given in (2) is con-
sidered with the following initial  conditions
X;j(0) = (8:;(0),5:;(0),R; ;(0),C;;(0))" € #} =

{Xij(t) = (Sij(0),4j(1),Rij(1),Cij(e)" e #*
Sij(t) > 0,1 ;(tr) > O,R; j(t) > 0,C;;(t) > 0, > 0},
forle{l,,k}"]e{ly,n}

Note 1 The model given in (2) is a generalization of the
SIRC model proposed by Casagrandi et al. (2006) for multi-
populations that spatially interact without migration dynam-
ics; see Sattenspiel and Dietz (1995). In fact, if all subpop-
ulations are isolated, which is equivalent to setting 11 = 0
in (2) (or equivalently /31] = 0 for all sites (f,ﬂ e Vi) we
have the SIRC model originally proposed in Casagrandi et al.
(2006), for each of the subpopulations. As a result, the term
S; il in the model given in (2) is related to the probabil-
ity that susceptible individuals from the site (i, j) become in-
fected due to contact with individuals from neighboring sites
in 'V, j, but without migration.

It is wort to mentioning that the specification of V; ; and
[3;’ H determines the topology of the multipopulation interac-
tion in the network. In particular, restriction on'V; ; and [)’;ﬂ;
(for example, ﬁl ;= 0 represents the isolation of subpopula-
tion) and can be seen as a control strategy. In this case, if
a disease starts in a subpopulation, it will become confined
in such a population, insofar as there is no interaction be-
tween different subpopulations ( ﬁ” =0), see Marques et al.
(2022a) and the references therein. If the network size is too
small or V; j contains as many neighborhood sites, then the
model dynamics given in (2) is expected to behave as a single
population model with a variable transmission rate B; ;. See
also the discussion in the next section. The topology of the
multipopulation interaction is the main subject of the numer-
ically simulated scenarios in Section numerically simulated
scenarios.

The assumption of non-migratory dynamics and the birth
/ mortality rates to be constant implies that the number of in-
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dividuals in each subpopulation N; ; remains constant. The
nonmigration assumption allows us to analyze the effects
of the neighborhood interaction topology analytically, as
shown in Section Effects of introducing space in the disease
dynamics. However, it is one of the weaknesses of the pro-
posed model. We aim to analyze the model given in (2) with
some migration patterns, for example, the one proposed in
Sattenspiel and Dietz (1995) in future contributions.

In the following, we present the well-posedness of the
model given in (2), which supports the forthcoming analysis
and the numerically simulated scenarios and their interpreta-
tions presented in Section Numerical simulated scenarios.

Theorem 1 Let the parameters of the model given in (2)
be constant and the initial conditions given by X; ;(0).
Then, there exists a unique, continuously differentiable and
non-negative solution X (t) (a vector with n -k coordinates
corresponding to (S; ;(t),1;j(t),Ri j(t),Ci ;(t)), for all, i =
1,---,n, j=1--- k, with non-negative coordinates) for any
t € [0,+oo|, that continuously depends on the model param-
eters and initial conditions.

Sketch of the Proof: Since there is no migration, then sum-
ming over all the equations in the model given in (2), it fol-
lows that the total population at each site remains constant for
allz. Asaresult, S; j, I; j, R; j and C; ; are uniformly bounded.
Therefore, the Jacobian matrix corresponding to the right-
hand side of model defined in (2) is uniformly bounded.
Then, from the Mean Value Theorem Hale (1980) we see
that the right-hand side of (2) is right-hand continuous with
respect to t and Lipschitz continuous with respect to S; ;, 1; j,
Rijand C;j, fori=1,---,n, j=1,--- k. The continuity
of i, Iij, Rijand C; j, fori=1,---,n, j=1,--- k, also
follows straightforward arguments. It follows from classical
results on dynamical systems, e.g., Hethcote (2000), the exis-
tence of a unique smooth and positive solution X (7) as stated
in the Theorem, in the interval [0, 7], for some T > 0. Since
the solution is uniformly bounded by »; ;, it follows that the
right-hand side of the system proposed in (2) can be bounded
by an affine function depending only on the solution of the
model X(¢) and the model parameters. Therefore, using the
classical results of the dynamical system Hale (1980), the so-
lution can be continuously extended to the positive real line.
O

3 EFFECTS OF INTRODUCING SPACE IN THE
DISEASE DYNAMICS

In this section, we address some interesting conclusions
about some of the effects of space inclusion in disease dif-
fusion dynamics based on the behavior and properties of the
solution of the model given in (2).

First, it should be noted that Theorem 1 implies that I7
(defined in (1)) is a monotonically increasing function of the
neighborhood topology V; ; and its intensity 3; j»atany given
time t > 0, as a result of /; ;(¢) > 0. '

Hence, from the first equation in the model given in (2), we
can see that S; ;(¢) remains a decreasing function of r when-
ever

Si,j(Bi jlij +11) — Wi j(Ni j — Sij
Ci,jS( JBijlij+11) — Wi j(Nij 1) 3)

Vi

In the early stages of the diseases, C;; = C; j(0) =0 or
I; ; = 0 (in the remaining non-infected sites).

The basic reproduction number'

In any case, if the neighborhood V; ; is not empty and has

some proportion of infected individuals such that %él’] ) > 1,
then it follows from the second equation of the model given
by (2) that /; ; will increase. Since & ; is constant, it follows
that J; (1) < oo, for all > 0.

As a result of the properties mentioned above and the
smoothness of J; ;(¢) (see Theorem 1), we conclude that there
will be a solution trajectory for ; ;() (depending on the
neighborhood topology of I7) that has a concave hump, as
shown in Figure 4-a). Therefore, /; ;(¢) reaches its maximum
at a point 7, €]0,+co[, known as the turning point, within
1. j(t;’) # 0. From the maximality of /; ; at z;” we have

i(t5') = 0. Hence, from the second equation in the model
given by (2) that

e -opch) [
P 1)

14 =2

Bi.jtij(t57)

Sij(1;7) =

The analysis of equation (5) reveals some possibilities
whose consequences is worth exploring is as follows:

i) In the first analysis, (3) implies that C; ; increases with
II. On the other hand, since the number of suscepti-
bles is always non-negative (see Theorem 1), then (5)
implies the following threshold for the cross-immunity,
given by

(Hij+ i)

(6)
Such bound is independent of the neighborhood topol-

ogy. This phenomena is observed numerically in Fig-
ures 2 and 4-b).

!Quantity that expresses the expected number of cases directly generated
by one case in a population and within the selected population at the initial
phase of the infection Diekmann (1990); van den Driessche and Watmough
(2002). of the population (i, j), calculated using the next generation matrix
Diekmann (1990); van den Driessche and Watmough (2002), is given by

iy = (i) (ﬁm ) ﬁf,;) Q)

i,jev;

Therefore, we can have %é"l ) > 1, even when the basic reproductive number
Bi,

o, j+//~1Lj

to the case where f3; . 0). As a consequence, the asymptotical stability of

the disease-free equilibrium point at a site (i, j) also depends on the neigh-

borhood topology given in (1), (see the analysis derived in Marques et al.

(2023) for the spatially distributed SIR model).

of totally isolated subpopulations Fj,’g‘j )= < 1 (which corresponds
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ii) In an isolated population, that is, in a site (i, j) where
V;.j is empty (or 3; ;=0), then the number of suscepti-

bles at 7,7 is

(Wij+ ) —0iBi; lj(tp ) .

Bi.j

Sij(th) =

)

iii) Increasing the network topology V;; or the intensity
interaction ﬁ ;, causes S,-(tf,) to decrease (since the
denominator in (5) increases), and therefore I (t[’;) in-
creases. Figures 1, 10 and 12 depicted this situation.

iv) As a consequence of items ii) and iii), S,-(t;,’" ) remains
at its highest possible value in the scenario where there
is minimal interaction between populations and cross-
immunity.

he effects of introducing space into the model dynamics
proposed in (2) and it relation to above-mentioned situations
1), ii), iii) and iv) will be addressed numerically in the fol-
lowing subsection.

4 NUMERICAL SIMULATED SCENARIOS

In this subsection, we investigate numerically the effect that
the interaction between distinct subpopulations following the
dynamics given in (2) has on the disease dynamics that reflect
the situations i), ii), iii) and iv) described above. In all the
presented simulations, the solution X (¢) of the model given
in (2) is numerically obtained using the Euler method with a
step-size of h = 10~* that guarantee the numerical acurracy
of the aproximation and avoids the stiffness phenomena, see
da Silva et al. (2023.No Prelo). The network has 14 x 14
sites, which means that n = k = 14. Furthermore, the param-
eters o j= 52.14, 3,"’]' =0.75, Hij= 0.00001, Yij= 0.35 and
0;; =0.12, for i, j € {1,---,14}, based on the parameters
given in Casagrandi et al. (2006), are kept fixed in all simu-
lations. Therefore, as previously announced in Remark 1, we
shall see below the effects of the neighborhood of interaction
topology V; ; and its intensity given by the parameter ﬁl jon
the disease behavior for the infected and cross-immunity por-
tions of each of the populations.

SCENARIO 1: EFFECTS ON DISEASE DYNAMICS DUE TO
VARIATION OF THE DISTINCT POPULATION INTENSITY
INTERACTION [3A s, WHILE THE NEIGHBORHOOD OF IN-
TERACTION TOPOLOGY Vi j IS KEPT FIXED

In all simulations presented in this first scenario, we assume
that each population located in the patch (i, j) of the lattice
interacts only with the four neighbors in a rectangular vicin-
ity V; ; that has a common face interception, also called the
Neumann-type neighborhood, e.g. Marques (2019). In Fig-
ures 1 and 2, we see the effects on the dynamics of the total
infected and cross-immunity population for different choices
of interaction intensity f3; ; # 0 for (i,]) € V; j and zero else-
where. More specifically, in all simulated scenarios, we have:

1) The density N;; is constant, corresponding to a total
population of 100 individuals in all the 14 x 14 patches;

2) Infection starts at two distinct sites simultaneously at
t = 0. They correspond to the sites of the positions
(10,5) and (5,11) in the lattice. The total number
of infected individuals in such patches is I195(0) =
I511(0) = 20.

3) The initial conditions X; ;(0) are such that S; ;(0) = 100
and I; ; = 0 if (i,j) # (10,5) or (i,j) # (5,11) and
S10,5 =S5,11 = 80 (see item 2) andR,J(O) Cij(0)=0

in all patches

4) The distinct population interaction intensity is such that
B; ;= Bi,j/xinV; ;and B; ; =0, otherwise, the values of
Kk are chosen for simulated sub-populations with a large
or a small interaction in the vicinity V; ; as follows:

Case 1, k = 15000; It corresponds to f3; ; = 0.00783
and is the lower intensity interaction in the simulated
scenarios.

Case 2, k¥ = 1500; It corresponds to ﬁ;f =0.0783 and is
the middle-lower intensity interaction in the simulated
scenarios.

Case 3, k¥ = 150; It corresponds to ﬁA »=0.783 and is
the middle-large intensity interaction in the simulated
scenarios.

Case 4, k = 15. It corresponds to ﬁA »=7.83 and is the
large intensity interaction in the 51mulated scenarios.

In Figures 1-4, we presented the simulated scenarios using
the settings of this subsection. It is possible to see in Figure 1
that in Case 1 and 2 for the choices of Bl ; the total infected
proportion of the population presents an oscillatory behavior
due to the time it takes for the diseases to spread between
different sites (compare with equation (5)). This behavior is
not observed for the interaction of medium-large and high
intensity f3; ;» because in such cases the spread velocity of
the diseases between different populations is large, see red
and pink curves in Figure 1 (since /I is large in (5)). The
intensity of interaction between different populations ﬁA S
also monotonically related to the proportion of the 1nfected
population at the time of selection of infection (see Figure 1
and compare with Equation (5)). Monotonic behaviors
are reflected in the proportion of cross-immunity of the
population in terms of the choices for f8; 7» as presented in
Figure 2. The spatial distribution of the cross immunology
for Case 1 at time ¢ = 0.4 and Case 4 at time ¢ = 0.25 is
presented in Figure 3 on the right side. As can be observed
in Figure 3, the cross-immunity front wave does not cover
the lattice in Case 1, but has fulfilled all the patches for Case
4, even considering an earlier time for the last case. Such a
behavior implies that cross-immunity achieves stability early
for a large distinct population interaction f3; 5, as presented

i)
in Figure 2. A similar distribution can be observed in the
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infected population Figure 3 on the left.

In Figure 4, we show the evolution of the dynamics for
infected and cross-immunity populations in different lattice
patches for the intensity of interaction, representing Cases 1
and 4, respectively. The main difference in infected popula-
tions is the time at which the peaks occur (see also (5)). At
the patch (5,11) where the disease started, we observe the
first and more intense peak (see the Figure 4(a)). Another
interesting fact is the time interval in which the dynamics
between sites occurs when comparing cases 1 and 4. When
there is more interaction (Case 4), the time interval between
one curve and another is much shorter than in Case 1, in other
words, the diffusion of the disease in the space is faster (see
the Z;” in( 4)).

SCENARIO 2: EFFECTS ON THE DISEASES DYNAMICS
DUE TO VARIATION OF NEIGHBORHOOD TOPOLOGY V,'J

In this subsection, we present numerical simulation scenar-
ios for distinct choices of the neighborhood topology V; ; and
will discuss its effect on the dynamics of the disease. In par-
ticular, it shows another point of view of the effects of the
space interaction on the dissemination of diseases. The re-
sults presented in Figures 10- 13 show the distinct dynamics
of disease dissemination in the following neighborhoods:

e Neumann neighborhood: In such a neighborhood, each
population (patch) interacts only with the four neigh-
bors in a rectangular vicinity V; ; that has a common face
of interception (see Figure 5);

e V neighborhood: In such a neighborhood, each pop-
ulation (patch) interacts only with the eight neighbors
in a plus-shaped (not rectangular) vicinity V; ; (see Fig-
ure 6);

e V* neighborhood: In such a neighborhood, each popu-
lation (patch) interacts only with the eight neighbors in
a plus-shaped (not-rectangular) vicinity V; ; but the in-
tensity of the distinct population interaction ﬁ;ﬁ jisl /2
of the neighbor site that has a common face interception
(see Figure 7);

e Moore neighborhood: In such a scenario, each popula-
tion (patch) interacts with the eight neighbors in a rect-
angular vicinity V; ; (see Figure 8);

e Moore* neighborhood: This is a variation of the Moore
neighborhood, where we considered that each popula-
tion (patch) interacts with the eight neighbors in a rect-
angular vicinity V; ; but, in the absence of a common
face interception in the vicinity, the intensity of the dis-
tinct population interaction f3; pis 1 /2 of the neighbor
site that has a common face interception (see Figure 9);

In all simulations presented in this subsection, we used the
intensity of interaction between the different subpopulations
in the vicinity to be chosen as f5; ; = B if (i, j) €V and

B; ;= 0 elsewhere. The remaining parameters of the model
given in 2 are the same as those described at the beginning
of this section. Therefore, the effect of space throughout the
neighborhood topology V; ; is what makes the analysis dif-
ferent from the SIRC model with homogeneous population
analyzed elsewhere in Casagrandi et al. (2006). See also the
comments on Remark 1.

In Figure 10, we show the dynamics of the infected
proportion of the total population for different configurations
of V; ; as explained above. We can observe that for V; ; with
the same number of neighbors, the curves are very close
(see the blue and green curves in Figure 10 for example
and compare them with equation 5). The proportion of
cross-immunity in the population has a more evident peak
for smaller neighborhoods (see the blue curve in Figure 11).

We will present two situations for distinct initial con-
ditions, indeed: a) the disease started in two patches,
namely the patches (10,5) and (5,11), respectively. For
such a scenario, the initial conditions are the same as those
described in Subsection Scenario 1. b) The disease started
in only one patch, namely (5,11). In such a case, the initial
conditions are such that Ijo 5 = 0 and then S19 5 = 100. The
remaining initial conditions remain the same as before.

In Figure 12, we show the dynamics of the total infected
population in the network due to the distinct choices of the
neighborhood and the initial conditions, in three distinct
sections of the simulated time intervals. The early dynamics
of the infection is presented in Figure 12,-a). It is worth
noting that infection pick is monotonically decreasing with
the number of neighborhood sites in the vicinity V; ; and the
intensity interaction ﬁl 5 Moreover, it suffers a small shift in
time and a considerable decrease in its maximum due to the
initial conditions, with the infection beginning at only one
site. Figure 12 b) and c) show an oscillating and time shift
with the prevalence of the diseases in the long run of the
model (2) dynamics, that are independent of the simulated
initial conditions. In particular, this result shows that (5)
remains true.

In Figure 13, we present the dynamics of the proportion
of cross-immunity of the total population, for the simulated
scenarios described in this subsection. The simulations
presented show that the dynamics of the cross-immunity
is independent of the vicinity V; ; and the initial conditions
in the short duration of the diseases (up to ¢t = 0.5). Then,
it presents a monotonically decreasing behavior with the
number of neighborhoods and the intensity interaction ﬁ”
in the neighborhood topology V; ;. Then it presented and
shifted the oscillatory behavior independent of the vicinity
topology or initial conditions. Therefore, (6) is numerically
verified.

In Figure 14 we present the spatial distribution of the in-
fected population at the beginning of the infection t = 0.002
for different types of neighborhoods. Note that the sites
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(subpopulations) already affected by the infection differ
significantly in each case. For the type V neighborhood,
we observed that the sites with the presence of infected
people already exceeded half of the network. This fact is
also observable in the Figure 10(a), in which the largest
fractions of the affected population correspond to the V and
V* neighborhoods.

The simulation regarding distinct topologies for vicinity
choices shows a monotonically increasing and a shifted pick
of infection. Also, there is a monotonically decreasing pick
of cross-immunity in the total population with respect to the
number of neighbors in the vicinity. This monotonic behav-
ior is also observed due to the number of infected sites in
the initial conditions for the total infected populations, but
is not observed in the cross-immunity dynamics (see (6) and
(5)). The number of neighbors in the vicinity implies a shift-
ing oscillatory behavior and the permanence of the disease
infection and cross-immunity in the total population.

5 CONCLUSION AND FUTURE DIRECTIONS

In this contribution, we discuss the effects of space inclusion
on the behavior dynamics of a disease in which distinct and
not necessarily homogeneous interacting multi-populations,
distributed in a discrete two-dimensional network, acquire
only partial immunity to circulating stain, modeled by a com-
partmental multi-populational SIRC-type model without mi-
gration. The properties of the model solution were used to
show that the spread velocity and intensity of the disease to
reach its peak of infection in the network are monotonically
dependent on the topology of the neighborhood V; ; and the
intensity of the interaction [3;7 ;» While the cross-immunity is
uniformly bounded independently of such quantities. These
theoretical results are examined numerically in some partic-
ular cases for neighborhood topology V; ; and interaction in-
tensity ﬁ;ﬁ ; (see Subsection Scenario 1-Scenario 2). As far
as the authors are aware, such results were not investigated
elsewhere. The results obtained provide some clues about the
mechanisms of disease spread and loss of host immunity or
transient partial immunity in inhomogeneous populations.

Future developments of this approach include the analysis
of equilibrium points and stability.

doi: 10.58560/rmmsb.v03.n02.023.01


https://doi.org/10.58560/rmmsb.v03.n02.023.01

9 of 19 SOME EFFECTS A MULTI-POPULATION SIRC MODEL Chaves Marques, J et al.

Dynamics of Infected in the total population

0.2 I I I I I ! !
— Bm=0.00783
= [3;;=0.0783
e B;;=0.783
— Bm=7.83

0.15

0.1

0.05

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Time(years)

Figure 1: The dynamic behavior of the proportion of the total infected population for distinct choices of the intensity of the population
interaction in a Neumann type neighborhood.

Dynamics of Cross-Immunity in the total population
0.04 | | | | |

I I
——— B;,=0.00783
L e 3;;=0.0783
0.035 —— B;;=0.783

— Bm=7.83

0.03

0.025

0.02

0.015

0.01

0.005

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Time(years)

Figure 2: The dynamic behavior of the proportion of the total cross-immune population, for distinct choices of the intensity of the
population interaction in a Neumann type neighborhood.
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Infected spatial distribution Cross-immunity spatial distribution

patches
patches

2 4 6 8 10 12 14
patches patches

(a) Spatial distribution of the infected and cross-immune population in the lattice at time = 0.4, in the scenario of
lower sub-population interaction, in a Neumann type neighborhood - Case 1.

Infected spatial distribution Cross-immunity spatial distribution
1 14 . 1
12
0.8
10
14 0 0.6
£ £
8 8
g g
0.4
0.2
0
2 4 6 8 10 12 14 2 4 6 8 10 12 14
patches patches

(b) Spatial distribution of the infected and cross-immune population in the lattice at time r = 0.25 in the scenario of
large sub-population interaction in a Neumann type neighborhood - Case 4.

Figure 3
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Dynamics of Infected in the distinct patches
0.35 I I T

= Patch(5,11) for B;;=0.00783
= Patch(6,7) for B;;=0.00783
== Patch(3,5) for B;;=0.00783 =
— — Patch(5,11) for B;;=7.83
— — Patch(6,7) for B»‘v]=7.83

‘ ‘ ‘ ‘ — — Patch(3,5) for B;;=7.83

0.4 0.6 0.8 1 1.2 1.4

Time(years)
(a)

Dynamics of Cross-Immunity in the distinct patches
0.04
1 1 1

= Patch(5,11) for B;;=0.00783
= Patch(6,7) for B;;=0.00783
=== Patch(3,5) for B;;=0.00783
— — Patch(5,11) for B;;=7.83
— — Patch(6,7) for B;;=7.83
— — Patch(3,5) for By;=7.83

t

0.6 0.8 1 1.2 1.4
Time(years)

(b)

Figure 4: (a) The dynamic behavior of the proportion of the infected population in distinct patches for the parameter setting in the
scenario 1, for k = 1.500 and x = 15, respectively. (b) The dynamic behavior of the proportion of the population of the cross-immunity in
distinct patches for the parameter setting in scenario 1, for k¥ = 1.500 and k = 15, respectively.
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Infected spatial distribution
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Figure 5: An example of spatial distribution in the case of a

Neumann neighborhood.
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Dynamics of Infected in the total population
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Figure 10: The dynamic behavior of the proportion of the total infected population in different time intervals for distinct neighborhoods
for the parameter settings and neighborhood of the scenario 2.
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doi: 10.58560/rmmsb.v03.n02.023.01


https://doi.org/10.58560/rmmsb.v03.n02.023.01

15 of 19 SOME EFFECTS A MULTI-POPULATION SIRC MODEL Chaves Marques, J et al.
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Figure 12: The dynamic behavior of the proportion of the total infected population in different time intervals for distinct neighborhoods
according to choices a) and b) for the initial conditions and for the parameter settings and neighborhood of the scenario 2.
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Figure 13: The dynamic behavior of the proportion of the total cross-immune population for distinct neighborhoods according to choices
a) and b) for the initial conditions and for the parameter settings of scenario 2.

doi: 10.58560/rmmsb.v03.n02.023.01



https://doi.org/10.58560/rmmsb.v03.n02.023.01

17 of 19

SOME EFFECTS A MULTI-POPULATION SIRC MODEL

patches

patches

patches

Infected spatial distribution

2 4 6 8 10 12 14
patches

0.8

Infected spatial distribution

patches

Neumann type neighborhood

(a) disease started at two patches

Infected spatial distribution

2 4 6 8 10 12 14
patches

(c) Moore type neighborhood

Infected spatial distribution

2 4 6 8 10 12 14
patches

(e) V type neighborhood

0
2 4 6 8 10 12 14
patches
(b) disease started at one patch
Infected spatial distribution
14 1
12
10
wn
I ]
)
3
6
4
2
0
2 4 6 8 10 12 14
patches
(d) Moore* type neighborhood
Infected spatial distribution
1

patches

2 4 6 8 10 12 14
patches

(f) V* type neighborhood

Figure 14: Comparison between different neighborhoods in # = 0.002.

doi: 10.58560/rmmsb.v03.n02.023.01

Chaves Marques, J et al.


https://doi.org/10.58560/rmmsb.v03.n02.023.01

REVISTA DE MODELAMIENTO MATEMATICO DE SISTEMAS BIOLOGICOS, Vol.3( 2023), NoE, e23E01 18 of 19

REFERENCES

Andreasen, V.; Gog, J. (2020) ‘Pease (1981): The evolutionary epidemiol-
ogy of influenza a.” Theoretical Population Biology, 133, pp. 29-32.

Bernoulli, D. (1760) ‘Essai d’une nouvelle analyse de la mortalité causée
par la petite vérole, et des avantages de I’inoculation pour la prévenir’.
Histoire de I’Acad., Roy. Sci.(Paris) avec Mem, pp. 1-45.

Brauer, E., Castillo-Chavez, C. and Z., F. (2019) Mathematical Models in
Epidemiology. Springer.

Casagrandi, R. et al. (2006) ‘“The SIRC model and Influenza A’. Mathemat-
ical Biosciences, 200(2), pp. 152-169.

Diekmann, O., H.J..M.J. (1990) ‘On the definition and the computation of
the basic reproduction ratio r 0 in models for infectious diseases in
heterogeneous populations’. J. Math. Biol., 1(28), pp. 365-382.

Diekmann, O., Metz, J. and Heesterbeek, J.A.P. (1995) ‘The legacy of ker-
mack and mckendrick’. Epidemic Models: Their Structure and Rela-
tion to Data Mollison, D. E. (ed.), Cambridge University Press, Cam-
bridge., (1).

Gomes, A.C.EN. and De Cezaro, A. (2022) ‘A model of social distanc-
ing for interacting age-distributed multi-populations: An analysis of
students’ in-person return to schools’. Trends in Computational and
Applied Mathematics, 23(4), pp. 655-671.

Grifoni, A., Weiskopf, D., Ramirez, S.I., Mateus, J., Dan, J.M., Moder-
bacher, C.R., Rawlings, S.A., Sutherland, A., Premkumar, L., Jadi,
R.S., Marrama, D., de Silva, A.M., Frazier, A., Carlin, A.F., Green-
baum, J.A., Peters, B., Krammer, F., Smith, D.M., Crotty, S. and
Sette, A. (2020) ‘Targets of t cell responses to sars-cov-2 coron-
avirus in humans with covid-19 disease and unexposed individuals’.
Cell, 181(7), pp. 1489-1501.e15. doi:https://doi.org/10.1016/j.cell.
2020.05.015. Available at: https://www.sciencedirect.com/
science/article/pii/S0092867420306103.

Hale, J.K. (1980) Ordinary Differential Equations (2nd ed.), vol. 1. Malabar:
Robert E. Krieger Publishing Company.

Hethcote, H.W. (1989) ‘Three basic epidemiological models’. In Applied
mathematical ecology. Springer, pp. 119-144.

Hethcote, H.W. (2000) ‘The mathematics of infectious diseases’. SIAM Re-
view, 42(4), pp. 599-653.

Lazo, M.J. and De Cezaro, A. (2021) “Why can we observe a plateau even in
an out of control epidemic outbreak? a seir model with the interaction
of n distinct populations for covid-19 in brazil.” Trends in Computa-
tional and Applied Mathematics, 22(1), pp. 109-123.

Marques, J.C. (2019) Modelos para dispersdo de javalis { Sus scrofa }.
Ph.D. thesis, Universidade Federal do Rio Grande do Sul.

Marques, J.C., De Cezaro, A. and Lazo, M.J. (2022a) ‘A sir model with spa-
tially distributed multiple populations interactions for disease dissem-
ination’. Trends in Computational and Applied Mathematics, 23(1),
pp. 143-154.

Marques, J.C., De Cezaro, A. and Lazo, M.J. (2023) ‘On an emerging
plateau in a multi-population sir model’. preprint, (1), pp. 1-21.

Marques, J.C., Gomes, A.C.E.N. and De Cezaro, A. (2022b) ‘A numerical
study of the effect of population interaction on disease dissemination
and cross immunity’. In: McSul, 9, formato virtual.

Maurmann, A.C., Travessini De Cezaro, F. and De Cezaro, A. (2023) ‘A
fractional sirc model for the spread of diseases in two interacting pop-
ulations’. LATIN-AMERICAN JOURNAL OF COMPUTING, to ap-
pear, pp. 1-8.

Rossato, M.C., RODRIGUES, L.A.D. and Mistro, D.C. (2021) ‘Padroes es-
paciais de agregacdo populacional em modelos discretos’. CIENCIA
E NATURA, 42, pp. 1-13.

Sattenspiel, L. and Dietz, K. (1995) ‘A structured epidemic model incor-
porating geographic mobility among regions.” Mathematical bio-
sciences, 128(1-2), pp. 71-91.

da Silva, MLI., Marques, J.C., Conza, A.O., De Cezaro, A. and Gomes,
A.C.EN. (2023.No Prelo) ‘The stiffness phenomena for the epidemio-
logical sir model: a numerical approach’. In: Latin-American Journal
of Computing.

van den Driessche, P. and Watmough, J. (2002) ‘Reproduction numbers and
sub-threshold endemic equilibria for compartmental models of dis-
ease transmission’. Mathematical Biosciences, 180(1), pp. 29—48.

doi: 10.58560/rmmsb.v03.n02.023.01


https://www.sciencedirect.com/science/article/pii/S0092867420306103
https://www.sciencedirect.com/science/article/pii/S0092867420306103
https://doi.org/10.58560/rmmsb.v03.n02.023.01

19 of 19 SOME EFFECTS A MULTI-POPULATION SIRC MODEL Chaves Marques, J et al.

Recommended Citation: Chaves Marques, J et al. (2023). ‘Some effects of population interaction on a multi-population SIRC epidemiological model’.
Rev. model. mat. sist. biol. 3(E), e23E01, doi:10.58560/rmmsb.v03.n02.023.01

This open access article is licensed under a Creative
Commons Attribution International (CC BY 4.0) http://creativecommons.org/licenses/by/4.0/.
BY Support:

doi: 10.58560/rmmsb.v03.n02.023.01


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.58560/rmmsb.v03.n02.023.01

UNIVERSIDAD REVISTA

TECNOLOGICA MMSB
METROPOLITANA
UTEM - del Estado de Chile Revista de Modelamiento Matematico de Sistemas Bioldgicos
https://revistammsb.utem.cl | revista.mmsb@utem.cl Vo!.3(2023), No.E, pp.1-10, e23E02
ISSN-L: 2735-6817 | ISSN (online): 2735-6817 https://doi.org/10.58560/rmmsb.v03.n02.023.05

Modelamiento Matematico de la Fiebre Amarilla: un modelo
con migracion

Mathematical Modeling of Yellow Fever: a model with
migration

Lisandra Pitol!, “ Luciana Rossato Piovesan?

Glénio Aguiar Gongalves!  Fernanda Tumelero! “ Alexandre Sacco de Athayde!

Régis Sperotto de Quadros! y “ Daniela Buske!

™ Daniela Buske: danielabuske @ gmail.com

! Instituto de Fisica e Matematica,
Universidade Federal de Pelotas,
Pelotas / RS, Brasil

2 Centro de Engenharias,
Universidade Federal de Pelotas,
Pelotas / RS, Brasil

Recepcioén: 2023-04-05 | Aceptacién: 2023-08-10| Publicacién: 2023-10-29

Citacion recomendada: Pitol, L. e al. ( 2023). ‘Modelamiento Matemdtico de la Fiebre Amarilla: un modelo con migracién’. Rev. model. mat. sist. biol.
3(E), €23E02, doi:10.58560/rmmsb.v03.n02.023.05

This open access article is licensed under a Creative
Commons Attribution International (CC BY 4.0) http://creativecommons.org/licenses/by/4.0/.
BY Support:



https://utem.cl
https://revistammsb.utem.cl
mailto:revista.mmsb@utem.cl
https://revistammsb.utem.cl
https://doi.org/10.58560/rmmsb.v03.n02.023.05
https://orcid.org/0000-0003-2717-031X
https://orcid.org/0000-0001-6704-7522
https://orcid.org/0000-0001-7321-3742
https://orcid.org/0000-0001-8905-7860
https://orcid.org/0000-0003-2874-3685
https://orcid.org/0000-0002-9720-8013
https://orcid.org/0000-0002-4573-9787
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

REVISTA DE MODELAMIENTO MATEMATICO DE SISTEMAS BIOLOGICOS, Vol.3( 2023), NoE, e23E02 2 de 10

RESUMEN

En este trabajo nos limitamos al estudio de un modelo matemaético para la Fiebre Amarilla (FA), una enfermedad febril aguda
transmitida por vectores (en este caso, mosquitos). Este es un modelo compartimental conocido, propuesto por Esteva et al.
(2019), que divide a la poblacién en tres ciclos, segtn la dindmica de transmisién de la enfermedad: ciclo epidémico forestal,
ciclo entre humanos en la regién forestal y ciclo urbano (epidemia urbana de fiebre amarilla sostenida por humanos migrato-
rios infecciosos). A pesar de tener otros vectores, solo se consideré la presencia de dos vectores principales: el Aedes aegypti
(transmisor urbano) y el Haemagogus (principal transmisor en la region forestal). Ademads, proponemos una modificacion al
modelo: la inclusién de la vacunacidn. Asi, a través de simulaciones en el software Scilab, fue posible obtener gréficas del
comportamiento de cada una de las poblaciones (tanto hospedantes como vectores) en un ambiente con y sin presencia de
vacunacidn, permitiendo un andlisis mds detallado del impacto de la vacunacién en una poblacién humana susceptible.

Palabras Claves:

Modelo Epidemiolégico, Fiebre Amarilla, Sistema de Ecuaciones Diferenciales, Vacunacién

ABSTRACT

In this work we limit ourselves to the study of a mathematical model for Yellow Fever (YF), an acute febrile disease trans-
mitted by vectors (in this case, mosquitoes). This is a known compartmental model, proposed by Esteva ez al. (2019), which
divides the population into three cycles, according to the dynamics of disease transmission: forest epidemic cycle, human-to-
human cycle in the forest region and urban cycle (urban yellow fever epidemic sustained by infectious migratory humans).
Despite having other vectors, only two main vectors were considered: the Aedes aegypti (urban transmitter) and the Haemago-
gus (main transmitter in the forest region). In addition, we propose a modification to the model: the inclusion of vaccination.
Thus, through simulations in the Scilab software, it was possible to obtain graphs of the behavior of each of the populations
(both hosts and vectors) in an environment with and without the presence of vaccination, allowing a more detailed analysis
of the impact of vaccination on a susceptible human population.

Keywords:

Epidemiological Model, Yellow Fever, System of Differential Equations, Vaccination
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MATHEMATICAL MODELING OF YELLOW FEVER: A MODEL WITH MIGRATION

Pitol, L. et al.

1. INTRODUCCION

a epidemiologia es el campo de la ciencia que estudia

los patrones de salud y enfermedad, asi como sus
factores asociados en una poblacién (Martcheva, 2015).
En este contexto, las matematicas se convierten en un
importante aliado a través del estudio de modelos capaces
de describir el comportamiento de una enfermedad en una
poblacién y, con ello, poder predecir el comportamiento de
la enfermedad en el tiempo, decidiendo qué medidas son
mads eficientes. Reducir el contagio, verificar qué factores
son mds relevantes en la propagacién de la enfermedad,
entre otros.

Se han desarrollado modelos matemédticos para repre-
sentar la propagacién de enfermedades y no es diferente
con la Fiebre Amarilla (FA). Esteva et al. (2019), basado
en una variaciéon del modelo de Ross-MacDonald y en
trabajos previos sobre transmision vectorial, buscé evaluar
el riesgo de adquirir FA a través de migrantes en areas
forestales, ademads de verificar la potencial introduccién de
esta enfermedad en areas urbanas. Para ello, se consideraron
en el modelo dos vectores diferentes, que son el mosquito
Aedes aegypti y el mosquito Haemagogus y diferentes
ciclos epidémicos, que son el ciclo forestal, el ciclo entre
humanos en una regién forestal y el ciclo que representa
epidemia de FA urbana sostenida por humanos infecciosos
que regresan de la region forestal (migrantes). Danbaba and
Garba (2020), a su vez, estudi6 la dindmica de transmisioén
de FA en un entorno donde hay interaccién entre humanos
y mosquitos en presencia de vacunacién, asumiendo que la
transmisién vertical ocurre en la poblacién de mosquitos.
Kalra and Ratti (2020) presenta un modelo que considera
el entorno humano-mosquito con multiples medidas de
control. Las medidas de control adoptadas por Kalra and
Ratti (2020) aparecen en una clase denominada protegida y
comprenden individuos que adquirieron proteccién temporal
a través del uso de repelente de insectos. Ademds, también
se tiene en cuenta el tema de la vacunacién. Los modelos
que consideran el uso de una vacuna imperfecta se pueden
encontrar en los trabajos de Raimundo et al. (2015) y
Raimundo et al. (2016). Massad et al. (2005) intent6 estimar
la proporcién ideal de la poblacién a vacunar, teniendo
en cuenta los posibles riesgos de eventos adversos graves
causados por la vacuna y teniendo en cuenta la edad de los
individuos. Massad et al. (2017) presenta un modelo para
estimar la densidad de mosquitos Aedes aegypti a partir de
datos sobre la incidencia de un brote de dengue, donde se
analizan los riesgos existentes para la ocurrencia de una
reintroduccioén de FA urbana en dreas infestadas de dengue.
Codeco et al. (2007) ya estudi6 cudl seria el momento mas
adecuado para vacunarse contra la FA, comprobando las
ventajas y desventajas de vacunarse de forma preventiva o
durante un brote en zonas libres de la enfermedad.

Asi, este trabajo tiene como objetivo estudiar un modelo
matemdtico que describa la FA. La FA es una enfermedad

virica hemorragica transmitida por vectores, que son los
mosquitos (principalmente mosquitos Aedes aegypti, Hae-
magogus y Sabethes), se presenta con mayor frecuencia en
las regiones tropicales de Africa y América, especialmente
en América del Sur, y tiene gran importancia epidemiol6-
gica, ya que fue la primera enfermedad humana atribuida
a un virus (Sacchetto et al., 2020). Segun la Organizacién
Panamericana de la Salud — OPS/OMS. (2022), se registran
alrededor de 200.000 casos de FA y un total de 30.000 muer-
tes por la enfermedad al afio. Por lo general, la enfermedad
se desarrolla de manera leve, sin embargo, alrededor del 15
al 25% desarrolla una forma madas grave, donde el riesgo
de muerte es mayor, segin la Organizacién Panamericana
de la Salud — OPS/OMS. (2022). Los sintomas pueden
incluir fiebre, dolor de cabeza, dolores musculares, nduseas,
vomitos, fatiga, hemorragias en la piel e ictericia. Una
vez que el individuo desarrolla la enfermedad, cuando se
recupere, adquirird inmunidad para el resto de su vida.
Es importante resaltar que esta enfermedad no tiene un
tratamiento especifico, solo tiene la vacuna como medio de
prevencion.

Este trabajo adapta un modelo epidemioldgico desarrolla-
do por Esteva et al. (2019) que describe la transmisién del
virus que causa la FA, incluida la vacunacion.

2. METODOLOGIA

Los modelos matemadticos se han utilizado ampliamente
para estudiar la dindmica de la propagacion de enfermedades
infecciosas. En el caso de la FA, estos modelos matemati-
cos suelen estar compuestos por ecuaciones diferenciales
ordinarias, las cuales se encargan de describir el proce-
so de transmisién del virus que provoca la enfermedad
entre mosquitos, humanos y monos. En la construccion
de estos modelos se tienen en cuenta datos bioldgicos y
de comportamiento de las poblaciones involucradas. Con
una recopilacion de esta informacidn, es posible tener una
comprension mds profunda del proceso de transmision de la
enfermedad.

Propuesto originalmente por Esteva et al. (2019), este
es un modelo compartimental, que considera tres ciclos de
transmisién de FA diferentes, cada uno con sus propias par-
ticularidades: ciclo epidémico forestal, ciclo entre humanos
en la regién forestal y ciclo urbano (epidemia de Fiebre
Amarilla sostenida por migrantes humanos infecciosos).

En el modelo se considera que todo individuo infectado
también es infeccioso y que ningiin humano entra al bosque
infectado, solo puede salir de €l portando la enfermedad.
Ademds, se tiene en cuenta que todas las poblaciones
involucradas en la dindmica de transmisién son constantes.

El ciclo epidémico forestal, como su nombre lo indica,
ocurre en el bosque y los agentes que participan en esta
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etapa son los mosquitos Haemagogus (solo se considerd
este transmisor) y los monos. Estos dltimos, al ser mads
sensibles a la enfermedad, acaban muriendo mas facilmente,
provocando epizootias. Estas epizootias se convierten en un
indicador de alerta, ya que suelen preceder a los casos de FA
humana (CEVS-RS, 2021), ya que, cuando los mosquitos
no encuentran una gran cantidad de monos susceptibles de
los que alimentarse, buscan otras alternativas, en este caso
humanos, que se vuelven accidentales anfitriones (que es el
caso presentado en el préximo ciclo). El ciclo entre humanos
en la regién forestal también ocurre en la selva y estd
compuesto por mosquitos Haemagogus y seres migrantes
humanos, es decir, individuos que originalmente residen en
las ciudades, pero que por alguna razén (ya sea por trabajo
0 por ocio, por ejemplo) necesitaban mudarse al bosque por
un cierto periodo de tiempo. Finalmente, el ciclo urbano se
refiere a la transmision de la FA en las ciudades, provocada,
en este modelo, principalmente por el retorno de migrantes
humanos desde la region forestal. Este ultimo ciclo merece
atencién, ya que humanos infectados pueden transmitir el
virus de la FA a mosquitos Aedes aegypti (transmisores
urbanos) sanos, desencadenando asi una epidemia de Fiebre
Amarilla urbana.

Al insertar la vacunacién en el modelo original, se decidi6
introducirla solo en el medio urbano, ya que el paso de los
humanos por la regién forestal es transitorio, por un corto
periodo de tiempo en la mayoria de los casos. Asimismo, es
importante resaltar que, debido a que el bosque es un lugar
mads remoto y, muchas veces, de dificil acceso, la llegada y
almacenamiento de vacunas podria ser inviable.

Por lo tanto, la dindmica de la FA puede modelarse me-
diante el siguiente sistema de ecuaciones diferenciales. El ci-
clo forestal viene dado por:

ds,,

At

1 . .

— = Buswyw — Ywiw — My,

S )
Zw

t = Ywiw — UwZw,
&,
dt

= My — ﬁwswyw — HySw,

= aw(l _yw)iw + am(l _yw)im —Vwlw-

El ciclo entre humanos en la region del bosque es:

ds

d;n =08, — ﬁmsmyw — &S — HuSm,

di . . .

7;1 = ﬁmsmyw = Yulm — €l — Uylm, (2)
dz .

di;n = azu + Yulm — €Zm — HuZm + 6Vu~
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El ciclo urbano viene dado por:
ds
7: = Wy — BuSuYu — MuSu — 88y + €8y — fvsy,
di, . . .
7 = Busu)’u — Yulu — Hyly + €L,
Zu .
dl‘t = *SZM + €z + Yulu — HuZu, (3)
d .
dd)‘}; = (Xu(l _YM)lu — VuYu,
dl‘u = fvsu— 6Vu — 1V

Aqui, las variables s, i y z representan las poblaciones de
monos y humanos susceptibles, infectados y recuperados,
respectivamente. Se utilizaron los subindices w, m y u para
diferenciar cada uno de los ciclos. Los mosquitos infecta-
dos estdn dados por y (no se consideraron los mosquitos
recuperados ya que su vida es muy corta, sin tiempo de recu-
peracion) y la poblacién humana urbana vacunada estd dada
por V,. Cabe sefalar que fvs, representa la tasa de poblacién
de humanos susceptibles que adquieren inmunidad a través
de la vacunacién.

Las poblaciones totales de cada ciclo comprenden la
suma de los individuos presentes en el mismo y estin
dadas por: N, (poblacién de monos), N, (poblacién de
humanos viviendo en el bosque), N, (poblacién de humanos
viviendo en la ciudad), M,, (poblacién de Haemagogus), M,
(poblacion de Aedes aegypti) y Nj, (poblacién humana total,
Ny +N,).

Los pardametros considerados anteriormente para modelar
el problema son:

e L - tasa de mortalidad natural,

vy, - tasa de mortalidad de mosquitos Haemagogus,

e v, - tasa de mortalidad de mosquitos Aedes aegypty,

Y - tasa de recuperacién de la poblacidn,

e § - porcentaje de humanos que se mudan al bosque,

€ - porcentaje de humanos que regresan a la ciudad,
e ( - transmisioén de poblaciones infectadas a mosquitos,

e 3 - transmisién de mosquitos a susceptibles,

f - efectividad de la vacuna,

e - tasa de vacunacion.

Doénde:
= Mw _ Ny,
w:bw VR =b Oy )
B B NN, Oy = by oy 17—
—~ M, _ Ny,
= by B, O = byl ——1— (4
ﬁm ﬁm N, +N,, m w Um N, +N,, (€]
- M, _ N
Bu = buﬁuﬁ;‘v oy = buauﬁza
con:
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B, coeficiente de transmisién de Haemagogus para ani-
males del bosque;

e [,,: coeficiente de transmisién del Haemagogus para
migrantes humanos;

° Bu: coeficiente de transmisién de Aedes aegypti para hu-
manos;

e (,,: coeficiente de transmision de los monos al Haema-
gogus;

e (O, coeficiente de transmisién de migrantes humanos al
Haemagogus;

e (,: coeficiente de transmisién humana para Aedes aegy-
pti.

3. RESULTADOS Y DISCUSION

A partir de la resolucién de las ecuaciones diferenciales
mediante el método de Runge-Kutta de 4° orden y 4 etapas,
implementado en el software Scilab, fue posible obtener una
grafica del comportamiento de cada una de las poblaciones
analizadas, asumiendo que la poblacién urbana es, inicial-
mente, libre de FA, con circulacién de la enfermedad en los
demds ciclos.

También se consideré que los migrantes humanos per-
manecerian un mes en la regién de selva (¢ = 1) y que la
tasa de migracién 6 es de 0,02, es decir, alrededor del 2%
de la poblacién urbana se traslada a la zona de selva, por mes.

Aln asi, se consider6 que las poblaciones totales cumplen:
N, = 0N, /(e + W), Ny, = 0,5N;,, M,, = 3N,, y M, = 2N,
Ademéds, se consider6 que inicialmente no habia vacunas
y que la tasa de vacunacién era del 50% de la poblacion,
con una eficacia del 90 %. Es importante sefialar que la tasa
de vacunacion es un pardmetro muy variable y puede verse
influenciado por multiples factores. Por tanto, este porcen-
taje del 50% de la poblacién vacunada sélo se aplica a este
caso hipotético y debe analizarse con cautela para simular
casos reales. La eficacia de la vacuna es una aproximacion
a un parametro ya conocido, ya que la vacuna FA tiene
una efectividad de aproximadamente el 95 %, segin Brasil
(2021). El tiempo de simulacién fue de 120 meses (10 afios).
El resto de pardmetros utilizados en la simulacion se pueden
encontrar en Esteva et al. (2019) y se pueden ver con mas
detalle en el apéndice, junto con las condiciones iniciales.

En las Figuras 2 y 3 se puede observar el comportamiento
de las poblaciones que participan en los ciclos de FA en
ambiente con y sin vacunacién, en colores rojo y azul,
respectivamente.

Al analizar el comportamiento de las poblaciones, espe-
cialmente de las poblaciones humanas que participan de la
dindmica de la FA en un ambiente sin vacunacion, es posible
observar que, aun partiendo de ningin individuo infectado

9.2-1072

9-1072

8.8-1072

8.6-1072

8.4-1072

8.2-1072

swW

7.8-1072

7.6-1072

7.4-1072

7.2-1072

I .
40 50 60 70 80 90 100 110 120
t (meses)

Figura 1: Grifico del comportamiento de las poblaciones que
participan en el ciclo de FA.

en el drea urbana (libre de FA), con el tiempo, debido a la
migracién, la enfermedad se reinserta en el medio urbano,
provocando una epidemia. Esta epidemia se puede ver en
azul, en la Figura 2f.

Con la inclusién de la vacunacién en dreas urbanas, es
posible notar que la proporcién de humanos susceptibles e
infectados disminuye mads rdpidamente, lo que se puede ver
en las Figuras 2 (c), (d), (e) y (f). Una vez que los humanos
susceptibles son vacunados, se vuelven inmunes a la FA y
no pueden contraer el virus. Asi, con el tiempo, mds y mas
personas estdn siendo vacunadas y, por lo tanto, el nimero
de susceptibles se vuelve cada vez mds pequefio. Incluso
la disminucién de los susceptibles conduce a una rapida
disminucién del nimero de personas infectadas, ya que el
nimero de individuos propensos a contraer la enfermedad
es menor. El impacto de la vacunacién en la poblacién de
humanos infectados que residen en dreas urbanas se destaca
aqui (Figura 2f).

Las poblaciones de mosquitos infectados también se ven
afectadas por la vacunacion (Figura 3a y (b)). Se puede
observar, en rojo, que hay una disminucién en el nimero
de vectores, en ambos casos, y el nimero de mosquitos
infectados en la zona urbana tiende a cero rdpidamente.
Este dltimo hecho se debe principalmente a la disminucion,
seguida de la extincién, de humanos infectados en el drea
urbana (que pueden transmitir el virus a los mosquitos).

Ademads, al tener en cuenta las poblaciones humanas, se
observa que la insercion de la vacunacién conduce a una re-
cuperacion considerablemente mds rdpida, en relacién al ci-
clo sin vacunacion. Esto se puede ver en la Figura 3d y (e).
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4. CONCLUSIONES

Comprender el comportamiento de una enfermedad
es extremadamente importante para encontrar formas
de prevenirla o incluso erradicarla. Para auxiliar en esta
comprension, se vuelve fundamental el estudio de modelos
matematicos, ya que a través de ellos es posible describir
el comportamiento de varias enfermedades infecciosas,
teniendo la posibilidad de predecir su propagacion asi como
decidir la mejor estrategia para contenerla, ademds de poder
simular diferentes escenarios, con la inserciéon de nuevos
factores, que pueden llegar a establecerse en esa poblacién.

Con base en un modelo existente, se insertd la variable
vacunacién y, con ello, fue posible estudiar un modelo
epidemioldgico para la enfermedad de la FA, teniendo en
cuenta el nimero de vacunados asi como la efectividad de
la vacuna y, en consecuencia, fue posible verificar cdmo
estos factores influyen en el control de la infecciéon. De lo
anterior, se pudo verificar que el modelo propuesto presenta
resultados satisfactorios, indicando que la vacunacién es
una medida importante en el control de enfermedades, ya
que reduce considerablemente las poblaciones de humanos
y mosquitos infectados. Es posible notar que, cuando no se
aplicaba ninguna medida de control, es decir, cuando atin no
se habia introducido la vacunacion, el proceso de migracién
terminé por implicar la reinsercion de la FA en la zona
urbana, provocando una epidemia de la enfermedad. Cuando
se tiene en cuenta la vacunacién, la epidemia provocada
en el drea urbana ain se presenta, pero con una duracién
e intensidad muy bajas. Esta disminucién de la intensidad
de la epidemia es ciertamente atribuible a la vacunacion.
En el caso de la Fiebre Amarilla, el papel de la vacunacion
cobra atin mds importancia, ya que no existe un tratamiento
especifico para la enfermedad, solo medios de prevencion,
siendo la vacuna el principal.

El contexto abordado en este trabajo, utilizando la migra-
cion ciudad-bosque, también puede trasladarse a la movili-
dad urbana entre barrios o ciudades, lo que permite delinear
estrategias de vacunacion en dreas metropolitanas.
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A. APENDICES

Condiciones iniciales

Las condiciones iniciales utilizadas proceden de calculos
de puntos de equilibrio en diferentes situaciones: para las
ecuaciones del ciclo forestal se han utilizado los puntos de
equilibrio para el caso en que la FA estd circulando unica-
mente en la zona de bosque (con la excepcion de yw que
se calcul6 sobre la base del estudio de estos puntos); para

el ciclo entre humanos en la regién de bosque y para el ci-
clo urbano, se utilizaron los valores encontrados a través del
punto de equilibrio libre de la enfermedad. A continuacién
se describen las condiciones iniciales utilizadas:

Hy

sw(0) = 5———,
( ) ﬁwyw+“w
lW(O Bwlvlw)’w
(BW)’W + Hw)(}’w + Iiw)

Zw(0) =1 —5,(0) —i,,(0),
yw(0) =0,008203290301,

o)
m(0) = m»
in(0) =
zm(0) =

)
O =1- s
i,(0) =0,
ZM(O) = Oa
VM(O) = Oa
yu(0)=0
Parametros

Los pardmetros utilizados para la simulacién se pueden ver
en la siguiente tabla (Tabla 1):

Tabla 1: Pardmetros utilizados para la simulacién

Pardmetro Valor Referencia
By 0,4 Moreno et al. (2015)
B 0,25 Esteva et al. (2019)
B. 0,2 Esteva et al. (2019)
Qyy 0,4 Moreno et al. (2015)
Qpy 0,4 Esteva et al. (2019)
ay 0,25 Johnson et al. (2002)
Ly 0,0048 més -1 Esteva et al. (2019)
U 0,0012 més ~! Esteva et al. (2019)
Vi 0,46 més ~! Raimundo et al. (2016)
vy 0,913 més ~! Dengue Virus Net. (s.d.)
Vv 3 més ! Moreno et al. (2015)
Vi 4més ! PAHO (2005)
€ 1 més ~! Esteva et al. (2019)
) 0,02 més ~! Esteva et al. (2019)
by, 6 més ! Chadee et al. (1995)
by 6 més ~! Seawright et al. (1997)
f 0,9 Estimado
tv 0,5 Estimado
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Figura 2: Gréfico del comportamiento de las poblaciones que participan en el ciclo de FA.
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Figura 3: Grifico del comportamiento de las poblaciones que participan en el ciclo de FA.
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ABSTRACT

In this work, we propose a Coupled Map Lattice model to analyse the spatio-temporal dynamics of a system of three in-
teracting species: a resource species and two consumers. The resource is an insect with potential to become an agriculture
pest while one of the consumers is a parasitoid and the other, is a predator. All the three species reproduce at the same
time scale so that the dynamics is described by a system of three difference equations. The resource grows according to the
Beverton-Holt function and the consumption is described by the Holling type III functional response. By means of numerical
simulations, we observed that the pattern of species spatial distribution and the temporal density depend on the dynamical as
well as on the movement parameters. It can be stable or oscillating heterogeneous spatial distributions but the species can
also be homogeneously distributed in space. Finally, we observe that the inclusion of the space does not change the forecast
of extinction obtained by the local dynamics only for some parameters.

Keywords:

Coupled Map Lattice, Discrete Models, Resource Consumers models

RESUMEN

En este trabajo proponemos un modelo del tipo Redes de Mapas Acoplados para analizar la dindmica espacio-temporal de
un sistema de tres especies interactuantes: una especie recurso y dos consumidores. El recurso es un insecto con potencial
para convertirse en plaga agricola, mientras que uno de los consumidores es un parasitoide y el otro, un depredador. Las
tres especies se reproducen en la misma escala temporal, de modo que la dindmica se describe mediante un sistema de trés
ecuaciones en diferencias. La especie recurso crece segtin la funciéon de Beverton-Holt y el consumo se describe mediante
la respuesta funcional Holling tipo III. Mediante simulaciones numéricas, observamos que el patrén de distribucion espacial
de las especies y la densidad temporal dependen tanto de los pardmetros de la dindmica como de los de movimiento. Pueden
surgir distribuciones espaciales heterogéneas estables u oscilantes, pero las especies también pueden distribuirse homogénea-
mente en el espacio. Por tltimo, observamos que la inclusién del espacio no modifica la previsién de extincién obtenida
unicamente por la dindmica local para algunos parametros.

Palabras Claves:

Redes de Mapas Acoplados, Modelos Discretos, Modelos Recurso Consumidores
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1 INTRODUCTION

atural enemies of insects represent an important tool
N to control insect pest populations in agriculture. They
can help keeping the insect pest at acceptable densities and
hence, decrease the input of pesticides. Before introducing
biological species in the environment, it is important to
study the dynamics in order to avoid undesirable effects
such the extinction of non target species, for example. Most
studies on biological control deal with the interaction of an
insect pest and just one enemy. However, in natural habitats,
communities of many different species interact and the use
of multiple controlling agents in biological control is an
important topic for theoretical investigation (Hassel and
May, 1986; Jones et al., 1993; Hassell, 2000).

In the present work, we propose a discrete spatio-temporal
model to study the dynamics of three interacting species: a
resource species and two specialist consumers. The resource
species has potential to become an agriculture pest while
the consumers are the pest natural enemies. It can be,
for example, a rodent and two predators or an insect pest
and two parasitoids. For making the description and the
interpretation easier, we suppose that the resource species
is an insect pest; one of the consumers is a parasitoid and
the other is a predator. The resource species participates in
the interaction as host and prey at the same time; however,
we will refer to it by resource species in order to avoid
any confusion. The resource growth process is represented
by the Beverton-Holt model and its consumption by both
enemies is described by the discrete equivalent to the Holling
type III functional response (Kot, 2001). We also assume
that all the three species grow at the same time scale.

When the environment is markedly discrete and that the
dynamical processes occur at well defined time stages, a
model formulated in terms of Coupled Map Lattices (CML)
provide a good description (?Comins et al., 1992).

The paper is organized as follows: in the Coupled Map
Lattice Model Section we describe the CML model, the
local dynamics and the movement stage. In the section
Results we present the results of numerical implementations
of the proposed model while in the section Conclusions, we
discuss the results and make conclusions from the ecological
point of view.

2 COUPLED MAP LATTICE MODEL

The proposed CML model assumes a two dimensional
spatial domain, split in sites arranged as a lattice where
each site is identified by the index (i, j). The state of the
site (i, ) is described by three values corresponding to the
species density in the site. The dynamics is composed by
two different stages: the movement stage and the reaction
stage which occurs alternately (?).

(ij)

Figure 1: von Neumann neighbourhood (gray sites) of site (i, j).

During the movement stage, the individuals of each
species disperse and are redistributed in the lattice. Several
mechanisms can promote the individuals movement such
as a random movement in homogeneous habitat; biased
movement due to attraction to some source of food as well
as repulsion to toxic substances or enemies; it can also be
due convection of the fluid where individuals leave such
as the wind or a river stream (Edelstein-Keshet, 1998).
Here, we consider that the environment is homogeneous and
individuals move randomly to its neighbours.

We define the neighbourhood V; ; of site (i, j) as those sites
for which the individuals at site (i, j) can migrate. Here we
consider that individuals, of all the three species, at a site can
migrate to the four nearest sites. That is, we consider the von
Neumann neighbourhood defined by:

Vij={(—17):(+1,7): (7= 1): (0, j+ 1D}
and illustrated in Figure 1.

We represent by N; ;. the density of the resource species
and by P; jrand Wi: ;. the density of the parasitoid and preda-
tors, respectively, in the site (i, j), after the movement stage
of generation 7. At each generation, during the movement
stage, a constant fraction of each species: By for the re-
source, Bp for the parasitoid and By for the predator, leaves
the site (i, j) and evenly migrates to the sites of V; ;. Hence,
a fraction 1 — f3,, (where x = N, P or W) of each population
remains in the site (i, j).

The equations for the proposed movement stage are:

/ ﬁN
N = (1—PBn)Nij:+ Z TNX"N
(xy)€Vi;
/ o BP
P, =(1—=Pp)Pj:+ Z ZPX’” )
(x,y)eVij
vvi:j,t =(1=Bw)Wiji+ ), ETWWXW'
(xvy)evi.j

Moreover equations (1), we consider reflective boundary
conditions, so that the fraction 3, (x = N, P,W) of individuals
located at a boundary site migrate to the three (or two, for the
sites in the four corners of the domain) neighbouring sites.

doi: 10.58560/rmmsb.v03.n02.023.02
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That is, we suppose that the environment is uninhabitable
outside the domain and that individuals can sense the habitat
quality and decide do not leave it.

After the movement stage, all the interactions occur lo-
cally in each site: growth, intra-specific competition of the
resource individuals, parasitism and predation. The proposed
nondimensional equations for the dynamics are given by:

! ! / / ! !
Nijit1 =Ny j f (N j )& (Nij o P )82(N; s Wi )
/ /

P 1= BlN;,j,z(l — 81 (Ni,j,zaf’i,j,z))
Wijar1 = BaN, j, (1= 2N, ;s Wi ;)

2

where N; ;41 is the resource density, P, j;+1 and W; ;1 are
the density of the consumers at site (i, j) at the beginning of
generation ¢ + 1, after the reactions have taken place. Bj is
the number of the parasitoid viable eggs in one resource in-
dividual and B, represents the predator growth factor. Func-
tion f(N) which describes the resource growth, g; (N, P) and
g2(N,W) which represent the resource density that escape

from parasitism and predation, respectively, are given by

_ A
fWN) =

2]

( —aNP )
g1 (N,P) = e\ THer V2 3

)

( —ayNW >
2N, W) = e\

)
where A, k, ay, ey, ax a,d e are positive parameters.

In the absence of the consumers, the resource growths ac-
cording to the Beverton-Holt function f(N), which is equiv-
alent to the continuous logistic growth. A > 1 is the resource
species intrinsic growth rate and k is its carrying capacity. We
assume that predators and parasitoids consume the resource
with Holling type III functional response. N(1 — g.(N,1)),
(x =1,2), is a sigmoidal curve which describes the density
of the resource species captured by one consumer during
one generation (see Figure 2). It assumes that the consumer
is inefficient at low resource densities. On the other hand,
consumers have a saturation effect at high resource densi-
ties. (::)2’ (x = 1,2), represents the maximum density of
the resource species captured by one predator (or killed by
one parasitoid) during one generation (Kot, 2001). That is,
NlinﬁwN(l —g(N, 1)) = % (x=1,2). e% (x = 1,2) corre-
sponds to the resource density for which the fraction that
is captured (1 — g«(N,1)) by one parasitoid is maximum;
that is, é (x = 1,2) is the point of maximum of function
1—gx(N,1).

In order to identify the relevant groups of parameters,
we introduce the nondimensional variables n; j, = e2N; j;,

Piji = %Pz}j,z and w; j, = %W,-JJ in system (2) to obtain the

Captured Prey

5 2 n 6 s
Prey density

Figure 2: Holling type III functional response: density of resource
captured by one predator (or killed by one parasitoid) during a
generation. That is, N(1 — gx(N,1)) where x = 1,2.

following nondimensional equations for the dynamical stage:

! ! ! !/ ! /
Mijait =1 F )Gy Py ) Ga (g W)
! I !
Piji+1= ”i,j,z(l -G (”i,j,p pi,j,r))a
! ! !/
wijart = Hang (1= Ga(ng j o wi ),

“)
where n; ;11 is the resource density, p; ;41 and n; j;41 are
the density of the consumers at site (i, j) at the beginning of
generation ¢ + 1, after the reactions have taken place. Func-
tion F'(n) which describes the resource growth, G (n, p) and
G(n,w) which represent the resource density that escape
from parasitism and predation, respectively, are given by

—_ A

F(n) = TA-DZ>

L)

—Hjnp
Gl(n,p) :e<1+a|nz>, (5)

Gz(n7w) = e(ljnwé),

The nondimensional parameters are (; = @2
o = (%)2 and op = exk.

We observe that the equations for the movement stage (1)
in the nondimensional variables do not change.

3 RESULTS

Initially, we study the local dynamics. At each site (i, j), the
system (4) - (5) has five equilibrium solutions:

(

o P =

e P; = (71,p,0), the predator extinction equilibrium;

e P, = (7,0,w), the parasitoid extinction equilibrium and
e Ps = (7,p,w), the coexistence equilibrium.

The standard Jury criterion for linear stability analysis, in-
dicates that Py is never stable, since A > 1. P, is linearly
asymptotically stable given that:

doi: 10.58560/rmmsb.v03.n02.023.02
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Parasitoid species
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~
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Figure 3: Bifurcation diagrams with respect to p; for (a) resource
species, (b) parasitoid and (c) predator, with oy = 1.0764,
a) = 1.8, Uy = 1.94and A = 2.

e HA>I;
e 2)o3(p —oy) < 1and
° 3)0622([127061)<1.

Due to the complexity of the expressions in system (4) - (5),
it is not possible to find neither the analytical expressions for
P53, Py and Ps nor the conditions for their stability. Numer-
ical simulations indicate the existence and stability of these
equilibria as well as p—cycles and periodic limit cycles so-
lutions. Figure 3 illustrates the typical behaviour observed
in the dynamics through bifurcation diagrams of the popula-
tions with respect to y;. For small values of u;, P, is stable;
as U increases, the three species coexist and Ps is stable.
Further increase in {;, which means that the parasitoid ef-
fectiveness increases, promotes the extinction of the predator
population and then P; is stable until a bifurcation leads to
the emergence o limit cycles.

In order to study the spatio-temporal dynamics of model
(1), (4) and (5), we developed numerical simulations in
a 50 x 50 square lattice for several different dynamical

and movement parameters. Our main interest is identify
heterogeneous spatial distribution of the species. All the
simulations start from a heterogeneous small perturbation
of the asymptotic solution (7,p,w), numerically obtained
for each set of parameters. That is, n; jo = 7(1+0,1 éi}j);
pijo=p(1+0,1 éfj); wijo=w(1+0,1 éfj), where &1,
&2, &3 € [~1,1] are randomly chosen according to the
uniform distribution. For dynamical parameters for which
the equilibrium is stable, the initial distribution corresponds
to a small perturbation of the equilibrium in each site. On
the other hand, for parameters promoting oscillating cycles
(p—cycles or limit cycles), the initial value in each site
corresponds to a perturbation of a solution value.

The classical Turing type patterns appearing in predator-
prey systems occur for dynamical parameters for which the
local equilibrium is stable. Moreover, movement parameters
of prey and predators must be different (Edelstein-Keshet,
1988). In discrete models, heterogeneous patterns in
predator prey models have been found from perturbations
of the stable equilibrium along with discrepant movement
parameters for prey and predators (Rodrigues et al., 2011).
Heterogeneous spatial distributions for predator and prey
have also been found close to Neimark-Sacker bifurcations
(Rodrigrues et al., 2011). Since we do not have an analytical
criterion for pattern formation with three species in discrete
models, we consider the dynamics in different regions of the
dynamical parameters space and the movement parameters
with different magnitude for the three species.

We present the spatial distribution of the species trough
density plots in which the dark (light) gray tones indicate
high (low) densities. We also show graphs of the total
density of each species over time.

In a first numerical experiment, we consider dynamical pa-
rameters for which the local coexistence of the three species
is stable, that is, u; =2, up = 1.94, a; = 1.0764, op = 1.8
and A = 2. Furthermore, movement parameters for each
species were taken as 3, = 0.91, B, = 0.01 and B,, = 0.01.
The Figure 4 illustrates heterogeneous spatial distribution of
the resource (a), parasitoids (b) and predators (c) at time-step
t = 600. The pattern obtained also depend on the initial per-
turbation of the species however, the type of pattern is related
to the parameters. Figure 5 shows that the total population
remains constant over time.

In order to investigate the effects of the movement parame-
ters on the spatio-temporal dynamics, we fixed the dynamical
parameters as those in Figure 4 and simulate the equations for
different values of ;. Heterogeneous patterns were obtained
when both consumers move at low rates. We obtained homo-
geneous distributions of the species when at least one of the
consumers move at high rate (see Table 1).

Figure 6 shows the spatial distribution of the resource
species for u; = 4.5, up =194, oy = 1.0764, op = 1.8

doi: 10.58560/rmmsb.v03.n02.023.02
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Figure 4: Spatial distribution of: (a) resource species, (b)
parasitoids (c) predators, at t = 600, for yu; =2, yp = 1.94,
o =1.0764, 0p = 1.8, A =2, B, =091, B, = 0.01 and
By =0.01.

3000

2500

2000

1500

Total Populations

1000

500

0

0 100 200 300 400 500 600
Generations

Figure 5: Total populations of the resource species (solid black
curve), the parasitoids (dashed curve) and predators (gray curve).
The parameters are: (] =2, Uy = 1.94, a; = 1.0764, 0p = 1.8,
A=2,B,=0091,,=0.01 and B, = 0.01.

Table 1: Spatial distribution for different values of [, with
Ui =2, =194, a; =1.0764, 0p = 1.8 and A = 2.

Values of Spatial distribution
B, =0.01; B, =0.91; B, = 0.01 Homogeneous
B. =0.01; B, =0.01; B,, = 0.91 Homogeneous
B, =0.91; B, =0.91; B, =0.01 Homogeneous
B, =0.01; B, =0.91; B, =0.91 Homogeneous

and A = 2, and different values of the movement parame-
ters. For this set of dynamical parameters, the resource and
parasitoids species oscillate while the predator species goes
extinct in the local dynamics. The spatio-temporal dynam-
ics of the CML, on the other hand, depends on the move-
ment parameters. However, the predator species did not
persist for any of the movement rate used in our simula-
tions. The resource and parasitoid spatial distributions ex-
hibited either homogeneous or heterogeneous distributions.
Homogeneous distributions were obtained when resource
species and parasitoid movement rate were close to each
other (for example: B, =0.01; B, =0.01; B, =0.9; and
B, =0091; B,=098; B, =0.01, which are not illustrated
here for the sake of brevity). On the other hand, when their
movement rate were significantly different, heterogeneous
distributions were observed (Fig. 6). Since the parasitoid
spatial distribution is very similar to the resource one, Fig-
ure 6 only presents the spatial distribution of the resource
species. Figure 7 illustrates the corresponding total popula-
tion of the resource species (black continuous curve) and par-
asitoids (dashed curve). We can observe that the amplitude

()

Figure 6: Spatial distribution of the resource species at t = 600, for
dynamical parameters i =4.5, up =1.94, oy =1.0764, op = 1.8
and A = 2 and different sets of the movement parameter [3:

(@ B,=0.91; B,=0.01; B, =0.01;

(b) B, =0.01; B, =098; B, =0.01;

(¢) B.=091; B,=0.01; B, =0.9;

(e) B,=0.01; B,=0.98; B,=009;

of population oscillations depends on the movement param-
eters. It is worth noting that Figure 7(e) and (f) correspond
to oscillations with homogeneous spatial distributions (spa-
tial distributions are not illustrated in Fig. 6). That is, the
populations oscillate in time with the same density in all the
sites of the habitat.

We now perform the simulation with parameters for which
the local dynamics shows p—cycles of the resource and
the predator populations while the parasitoid goes extinct:
o) =1.0764, ap = 1.8, u; = 1.84, g, = 5.7 and A = 2. The
results of spatial model with this set of parameters depend
on the species movement rate. Figure 8 shows the resource
heterogeneous spatial distributions for different values of
(x =n,p,w). The predator distribution in space follows the
resource one while the parasitoid goes extinct as it occurs in
the local dynamics. The total population oscillates with am-
plitude dependent on the movement parameters (Figure 9).
Oscillations with the species homogeneously distributed in
space were obtained for movement parameters:

e 3,=091;8,=0.01;8, =0.9;,
e 3,=0.01;8,=0.01;B, =0.9; and
e f3,=0.01;8,=0.98;B, =0.9.

Figure 9 shows the total population for these parameters;
however the corresponding spatial homogeneous distribution
are not illustrated in the Figure 8.

We finally simulated the system with parameters for which
all the three species persist oscillating when space is not con-
sidered: w; = 1.84, up = 1.94, oy = 1.0764, o, = 4 and
A = 2. The results of the CML model simulations reveal
that, depending on the species movement parameters, either

doi: 10.58560/rmmsb.v03.n02.023.02
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Gemertons  Generatons

Figure 7: Total populations of the resource species (continuous
black curve), parasitoid (dashed curve) and predator species (gray
curve) for ; = 4.5, tp = 1.94, oy = 1.0764, op = 1.8 and A =2

and different sets for the movement parameters f3:
(@ B,=091; B,=0.01; B, =0.01;
(b) B, =0.01; B,=0.98; B, =0.01;
() B.=091; B,=0.01; B, =09
(d B,=0.01; B,=0.98; B, =009;
() B,=0.01; B,=0.01; B, =0.9;
) B.=091; B,=098; B, =0.01.

Figure 9: Total populations of the resource species (continuous
black curve), the parasitoid species (dashed curve) and the predator
species (gray curve) for ) = 1.8, up =5.7, oy =1.0764, ap = 1.8

and A =2, and different sets of values for :
(@ B,=091; B,=0.01; B, =0.01;
(b) B,=091; B,=0.98; B, =0.01;
() B,=0.01; B,=0098; B, =0.01;
(d B.=091; B,=001; B,=0.9;

)
€ B.=0.01; B,=001; B,=009;
. ‘ (f) B.=0.01; B,=098; B, =0.9.

Figure 8: Spatial distribution of resource species at = 600 for
w =184, u =57, 04 =1.0764, ap = 1.8 and A = 2 and
different sets of values for 3
(@ B,=091; B,=0.01; B, =0.01;

(b) B.=091; B,=0.98 B, =0.01;

(¢) B.=0.01; B,=0.98; B, =0.01;

doi: 10.58560/rmmsb.v03.n02.023.02
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(@

Figure 10: Spatial distribution of resource species at t = 600 for
=184, up, = 1.94, a; = 1.0764, ap =4 and A = 2 for the
different sets of values of 3:

(@ B,=091; B,=0.01; B, =0.01;

(b) B,=0.01; B,=0.01; B,=09.

heterogeneous (see Figure 10) or homogeneous distributions
can be obtained. The total populations also oscillate with
great amplitude when the distribution is homogeneous (Fig.

11(e) and (f)).

4 CONCLUSIONS

We proposed a CML model for three interacting species in
order to analyse the spatio-temporal dynamics of a resource
species consumed by two natural enemies: a parasitoid and
a predator. The resource species grows according to the
Beverton-Holt dynamics while it is consumed through the
Holling type III functional response by the two enemies that,
implicitly compete exploiting the same resource.

Unfortunately the complexity of the equations for the
local dynamics does not allow analytical results. However,
through numerical simulations we observed that the local
dynamics exhibit coexistence of the three species, which can
be either stable or oscillating; coexistence of the resource
species and one of the consumers, that is, depending on
the parameters, either the parasitoid or the predator can go
extinct; extinction of both the consumers and persistence of
the resource only.

In the results obtained in our simulations, the movement
of the species did not change the local forecast of extinction.
That is, when the local dynamics results in the extinction of
one the species, the CML model also lead to the extinction of
this species regardless its movement rate. It is important to
emphasize that this conclusion is limited to the simulations
carried out, the extinction forecast of the local model
can be changed for other combinations of the parameters.
Oscillating local dynamics also oscillates with space with
amplitude dependent on the movement parameters.

If from one hand side, the movement parameters do not
change the dynamics, on the other hand side, they determine
the spatial distribution of the species, whether heterogeneous
or homogeneous.  Heterogeneous distributions require
discrepancy between the species movement rate. However,

Figure 11: Total populations of the resource species (continuous
black curve), the parasitoid species (dashed curve) and the predator
species (gray curve) for i = 1.8, up =1.94, oy =1.0764, ap =4

and A = 2, and different sets of values for 3:
(@ B,=091; B,=0.01; B, =0.01;
(b) B.=0.01; ﬁp =0.01; B, =09
() B,=0091; B,=0.01; B, =0.9;
(d) B,=0.01; B,=0.98; B, =0.01;
(e) B.=0.01; B,=098; B,=0.9;
(f) B.=091; B,=098; B, =0.01

doi: 10.58560/rmmsb.v03.n02.023.02
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this is not enough and there is no straightforward relation
between the parameters to guarantee the existence of
heterogeneous patterns. A criterion for pattern formation
induced by diffusion in discrete models can be found for two
interacting species (see Rodrigues et al. (2011)); however,
we do not know, to the best of our knowledge, a similar
criterion for three interacting species.

From the ecological point of view, our results suggest
that it is necessary to take care with the introduction of two
species for the biological control of a pest species since one
of the consumers can lead the other to extinction, unless they
have similar performance in terms of effectiveness of the re-
source consumption. The advantages of two natural enemies
in biological pest control then demand more investigation
and the study of more specific situation are recommended.
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ABSTRACT

COVID-19 is a disease that has surpassed the mark of 760 million confirmed cases and has caused more than 6.8 million
deaths, revealing the importance of seeking and studying strategies to control its spread. Therefore, the objective of this
work is to analyze two of the main mechanisms proposed to control the spread of this disease: confinement and vaccination.
To do so, a cellular automaton based on a SCEIRDV compartmental model was constructed, with susceptible, confined,
exposed, infected, recovered, dead, and vaccinated individuals. Simulations were performed in scenarios with and without
confinement and/or vaccination, mainly analyzing the number of deaths, the average number of infected individuals per day,
and the maximum number of individuals simultaneously infected. It was concluded that both strategies contributed to the
reduction of these indicators, especially when adopted together.

Keywords:

Epidemiology, Compartmental models, Cellular automata, COVID-19

RESUMEN

COVID-19 es una enfermedad que super6 la marca de 760 millones de casos confirmados, ademds de causar mds de 6.8
millones de muertes, lo que revela la importancia de buscar y estudiar estrategias para controlar su propagacion. Por lo tanto,
el objetivo de este trabajo es analizar dos de los principales mecanismos propuestos para controlar la propagacion de esta
enfermedad: el confinamiento y la vacunacién. Para hacerlo, se construy6 un autémata celular basado en un modelo com-
partimental SCEIRDYV, con susceptibles, confinados, expuestos, infectados, recuperados, muertos y vacunados. Se realizaron
simulaciones en escenarios con y sin confinamiento y/o vacunacidn, analizando principalmente el nimero de muertes, el
promedio de infectados por dia y el mdximo de individuos simultdneamente infectados. Se concluyé que ambas estrategias
contribuyeron a la reduccién de estos indicadores, especialmente cuando se adoptaron conjuntamente.

Palabras Claves:

Epidemiologfa, Modelos compartimentales, Autématas celulares, COVID-19
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SPATIAL SPREAD OF AN EPIDEMIC IN THE CONTEXT OF CELLULAR AUTOMATA

Cargnelutti Rossato, M et al.

1 INTRODUCTION

OVID-19 is a serious respiratory infection that has

a high transmissibility rate, recording more than

760 million cases and 6.8 million deaths around the world

(World Health Organization, 2023). A major initial concern,

in addition to the number of infections and deaths, was that

there were too many people infected simultaneously, which
could lead to hospital overload.

Consequently, some social isolation measures were sug-
gested as a strategy to try to avoid this overload and, at the
same time, a great mobilization was initiated for the devel-
opment of a vaccine for the disease. Thus, this work aims to
analyze the influence of confinement and vaccination mea-
sures in controlling the spread of COVID-19 through the
construction of a mathematical model that represents the spa-
tial spread of this disease and the performance of simulations
considering the different possible scenarios.

2 SUGGESTED MODEL

One of the first compartmental models in the area of epidemi-
ology was developed by Kermack and McKendrick (1927),
in which a system of three differential equations was de-
scribed to represent the variation of susceptible, infected and
recovered individuals. The compartments to be used in a
model must be chosen considering the characteristics of the
disease to be analyzed and the objective of the model (Heth-
cote, 2000). Therefore, to describe the spread of COVID-19,
we developed a compartmental SCEIRDV model, in which:

e S represents susceptible individuals, who are likely to
be infected by the disease or to take measures to protect
themselves, such as self-confinement or vaccination;

e C represents confined people, who protect themselves
from the disease by remaining isolated and not visiting
anyone or receiving visitors;

e E represents those who have had recent exposure to the
disease and have not yet developed symptoms, who are
less likely than infected people to infect susceptible;

e [ represents the infected who have been exposed to the
disease for a few days and are symptomatic, being more
likely to infect the susceptible;

e R represents recovered individuals, who had the disease
and developed a temporary immunity to it;

e D represents those who died from the disease, since
deaths from natural causes were not considered, and;

e V represents vaccinated individuals, who cannot be con-
taminated during the vaccine effect interval, even hav-
ing contact with exposed or infected people.

The compartment for dead individuals could be removed
without affecting any results, as they do not participate in

the transmission dynamics, but we have included it as a sim-
ple way to count their numbers. While it may be more in-
formative to assume that vaccination does not provide full
protection against infection and does not prevent vaccinated
individuals from transmitting the disease, we are consider-
ing the best possible scenario, in which vaccinated individu-
als cannot become infected and therefore cannot transmit the
disease. Although it is generally considered that exposed in-
dividuals cannot transmit the disease, we decided to consider
that they can infect at a lower rate than infected individuals,
as was done by Chowell and Brauer (2009).

To carry out the simulations, a cellular automaton was de-
veloped, which is a model of discrete states, time and space,
in which a state is assigned to each region of the domain,
which can be called a cell (De Vries et al., 2006). Thus, an
automaton of dimension 100 x 100 was constructed by the
authors, which can be understood as a matrix 100 x 100 in
which each element represents the state (susceptible, con-
fined, exposed, infected, recovered, dead or vaccinated) of
the individual living in the corresponding cell.

Initially, only 1 was considered infected near the center of
the domain, while all other 9999 individuals were suscepti-
ble. In Figure 1, the possible state changes are presented,
associated with the parameters that influence these changes.

C D
pel  te i
pv pe
Ve ]
tv pi
tr

pm
Figure 1: Diagram of the compartmental model SCEIRDV.

ti
pr=1-pm
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Instead of considering that the spatial spread of the disease
would occur only through contacts between direct neighbors
and following the classic diffusion equation, it was defined
that, at each instant of time (which corresponds to one day),
each person would randomly interact with others three peo-
ple within 5 units horizontally and vertically of their position.
When there is contact between a susceptible individual and
an exposed or infected individual, the susceptible individual
may become exposed to the disease with probabilities p, or
pi, respectively. It should also be noted that the confined and
dead do not participate in these interactions, being excluded
from the interaction options of other individuals.

It is assumed that individuals exposed to the disease de-
velop symptoms and go to the infected compartment after
an incubation time of 7, days and, after #; days, an infected
person can die with probability p,, or recover with probabil-
ity p» = 1 — p,. A recovered person becomes susceptible
again after 7, days. Finally, at each instant of time, every sus-
ceptible individual can confine himself with probability p,
or be vaccinated with probability p,. The confined remain
totally isolated for a period of 7. days, then returning to be-
ing susceptible, and the vaccinated remain protected during

doi: 10.58560/rmmsb.v03.n02.023.03
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an interval of 7, days and then also return to the susceptible
compartment.

In this model, we use stochastic components for the prob-
abilities that an individual will be infected, confined, vacci-
nated, and to determine whether the individual recovers or
dies after an infection. However, the times in which he re-
mains vaccinated, confined, exposed, infected or recovered
are presented in a deterministic way. An analogous com-
pletely stochastic model could be constructed using the re-
lation p = %, in which, for example, a confined individual
would have a probability of % to leave the confinement each
day rather than becoming deterministically susceptible after
t. days.

To estimate the parameters accurately, we reviewed several
articles. Li et al. (2020) reported an average disease incuba-
tion period of 5.2 days in the first 425 COVID-19 patients
in Wuhan, while Elias er al. (2021) analyzed 99 studies pub-
lished between January 1, 2020 and January 10, 2021, and
found an average incubation time of 6.38 days. Addition-
ally, Wu et al. (2022) obtained a mean incubation time of
6.57 days in 142 studies with a total of 8112 patients, which
could be even lower considering specific strains. Thus, we
set , = 6 days.

Studies have provided estimates of the infectious period
for the disease ranging from 5 to 14 days. The analysis
by Acuifia-Zegarra et al. (2020) estimated infectious periods
of 5.97 days for asymptomatic patients and 10.81 days for
symptomatic patients. Moreover, viral loads were found to
peak around 10 days after symptom onset, according to Zou
et al. (2020). Byrne et al. (2020) reported that the average
time from symptom onset to two negative RT-PCR tests was
13.4 days. In this work, we use #; = 10 days.

The duration of protection provided by the COVID-19
vaccine is difficult to pinpoint precisely, but studies suggest
a decline in its effectiveness between 3 to 6 months after
vaccination. Research has shown that the high initial anti-
body titers induced by mRNA vaccines diminish by this time
frame (Barouch, 2022), with mean antibody levels 4 months
after vaccination falling to just 6.3% of peak levels (Khoury
et al., 2021). Furthermore, a reduced efficacy against hos-
pitalization within 3 to 4 months post-vaccination has been
reported by Collie et al. (2022). Based on these observations,
we have set 7, = 120 days.

While Reynolds ef al. (2020) reported detecting neutral-
izing antibodies against SARS-CoV-2 at 16-18 weeks after
infection, other studies suggest the potential for reinfection
with an average time of 50.5 days (Dos Santos et al., 2021).
Additionally, Seow et al. (2020) observed that individuals
could maintain high levels of neutralizing antibodies for up
to 60 days after infection. In order to establish a parameter
between these observed values, we define ¢, = 90 days.

It is assumed that an individual will remain confined for an
average of 30 days and may face isolation again in the future.
Hence, we set 7. = 30 days. The mortality rate is calculated
by dividing the number of deaths from the disease by the
total number of cases, using data reported by World Health

Organization (2023). This yields pm = 7200005 ~ 0-009.

For any interaction between an infected person and a sus-
ceptible person, the probability of exposure for the suscep-
tible person is assumed to be 3%. Therefore, we define
pi = 0.03. In the case of an interaction with an exposed indi-
vidual, it is assumed that the probability of exposure for the
susceptible person is half of that, or p, = 0.015.

3 SIMULATIONS

In order to analyze the influence of confinement and vacci-
nation on the spread of the disease, the results obtained in
simulations with and without confinement and/or vaccination
will be presented, mainly evaluating the number of deaths,
average infected per day and maximum number of simulta-
neously infected individuals.

Table 1 presents the parameters used for each simulation,
with periodic boundary conditions and a total simulation
time of 1,095 days (approximately 3 years). The values of
pc and p, differ in each simulation, and will be discussed in
detail for each of the considered scenarios.

Table 1: Parameters

Parameter Value Meaning

te 6 days Incubation time

ti 10 days Infectious period

tc 30 days Consecutive confinement time

t 90 days Period of immunity from disease
ty 120 days Period of vaccine immunity
Pm 0.009 Mortality rate

pi 0.03 Infection rate by infected individuals
De 0.015 Infection rate by exposed individuals
Pe 0.01 —0.03 Confinement rate

Py 0.001 —0.005 Vaccination rate

First, in the simulation without confinement and without
vaccination, that is, with p. = p, = 0, a total of 403 deaths
were obtained, which is about 4% of the initial population
of 10,000 individuals. The evolution of the number of sus-
ceptible, exposed, infected, recovered and dead is shown in
Figure 2.

It is possible to observe that, without any containment
measures, the virus continues to spread with great intensity
even when there is a high number of deaths, with an aver-
age of 405.7 people infected per day. The maximum number
of people simultaneously infected is 1,255, occurring on day
927. Figures 3a and 3b show the day with the highest number
of infected people and the scenario after 1,095 days, respec-
tively.

Similar to the colors in Figure 2, the black squares repre-
sent the dead, the green ones are recovered, the red ones are
infected and the orange ones are exposed to the disease. The
only difference is that the susceptibles, previously displayed
in yellow, are now represented by white squares. It is noted
that at the end of the simulation there are still several foci
of infection, similarly to the day when there is the highest
number of infected people.

doi: 10.58560/rmmsb.v03.n02.023.03
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Figure 2: Result of the first simulation, without confinement and
vaccination.

(b) End of simulation, after 1,095
days

(a) Day when there are the most
infected

Figure 3: Spatial distributions of the simulation without
confinement and vaccination.

To carry out the second simulation, it was considered that
the confinement rate should start high and be reduced over
time, since there are several factors that lead people not to
isolate themselves at home for a long time, such as the need
to going out to work or the desire to meet friends and family,
for example.

Thus, an initial confinement probability of p. = 0.03 was
defined, which was linearly reduced until reaching p. = 0.01
at the end of 2 years (730 days), remaining constant at this
value until the end of the analyzed period, as can be observed
in Figure 4.

Again without vaccination (p, = 0), the simulation re-
sulted in 403 deaths, the same as the previous scenario. A
summary of this simulation can be seen in Figure 5.

By reducing the number of susceptibles through confine-
ment, it is observed that the oscillations of all compartments
are smaller and the peak of infected individuals in one day
is also reduced by one third to 837, which can help to avoid
overloading hospitals. Even so, the average number of peo-
ple infected per day is 398.1 people, which indicates that,
although confinement manages to reduce the number of peo-
ple infected simultaneously, there is no significant reduction
in the total number of infections, they only occur in a slightly

0.030 1

Confinement rate

0.025 1

0.020 1

0.0159

0.0101

0.005 4

0.000 1

T T T
0 200 400 600 800 1000
Days

Figure 4: Evolution of the confinement rate over time.
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Infected
Recovered
Dead
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6000 4
4000 4

2000

T T T T T
0 200 400 600 800 1000
Days

Figure 5: Result of the second simulation, with confinement and
without vaccination.

more homogeneous way over the days. The spatial distribu-
tion of the population on day 686, when the number of in-
fected people peaked, and at the end of 1,095 days are shown
in Figures 6a and 6b, respectively.

(b) End of simulation, after 1,095
days

(a) Day when there are the most
infected

Figure 6: Spatial distributions of the simulation with confinement
and without vaccination.

The colors are the same as shown in Figure 3, with the
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inclusion of cyan for confined individuals. It is observed that
the high number of confined means that the infection cannot
reach as many people at the same time as in the previous case,
but there is still a considerable oscillation in the number of
infected even after approximately 3 years.

The third scenario serves to analyze the impact of vaccina-
tion alone, therefore confinement is not carried out (p. = 0).
Estimating that people could start vaccinating approximately
1 year after the onset of the disease and that the vaccination
rate would increase as more vaccines were purchased and
more people could be vaccinated, it was defined that p, =0
initially, spiking to p, = 0.001 at t = 365 days and growing
linearly up to p, = 0.005 at r = 730 days, remaining con-
stant until the end of the analyzed period. The graph of the
vaccination rate over time is shown in Figure 7.

0.005 1

® \Vaccination rate

0.004 1

0.003 9

0.002 4

0.001 4

0.000 1 G

0 200 400 600 800 1000
Days

Figure 7: Evolution of the vaccination rate over time.

The evolution of the disease in this case is shown in Figure
8, which shows that there were 306 deaths, a reduction of
about 24% compared to previous cases.

10000 Susceptibles
Exposed
— Infected
8000 4 Recovered
— Dead
—— Vaccinated
6000
4000 4
2000+
0 /\\
T T T T T T
0 200 400 600 800 1000

Days

Figure 8: Result of the third simulation, with vaccination and
without confinement.

In this simulation, a large difference is observed in the
number of infected people before and after the start of vacci-
nation. While there is a peak of 1,022 infected on day 180,

the highest number of individuals simultaneously infected af-
ter the start of vaccination (disregarding the first days, as the
vaccine began to be applied at a time when the number of in-
fected people was close to maximum value) was 523 people,
on the day 582.

In this way, it is possible to observe that the vaccination
was able to reduce both the maximum number of infected
in one day and the average of infected over the days, which
dropped from about 400 to 301.7. The spatial spread on the
days when there is the highest number of infected people af-
ter the start of vaccination and after 1,095 days can be seen
in Figures 9a and 9b, respectively.
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(a) Day when there are the
most infected after starting

(b) End of simulation, after
1,095 days

vaccination

Figure 9: Spatial distributions of the simulation with vaccination
and without confinement.

In this case, blue squares are included to represent those
vaccinated. Analyzing the two scenarios, it is observed that
in Figure 9a, while the vaccination rate was still rising, there
are some large groups of susceptibles nearby, which facili-
tates the spread of the disease. Meanwhile, it is noted that at
the end of the 1,095 days, susceptibles are often surrounded
by vaccinated and recovered, which makes it difficult for the
disease to spread.

Finally, the last simulation analyzes the combined effects
of confinement and vaccination. Thus, it starts with p. =
0.03 which decreases linearly to p, = 0.01 in t = 730 days,
while p, = 0 during the first year, jumping to p, = 0.001 af-
ter 365 days and growing linearly up to p, = 0.005 atr = 730
days, as used in the two previous simulations. Combining the
two mechanisms to control the spread of the disease, there
were only 261 deaths, about 35% less than in the first simu-
lation, in which there was no form of control. The evolution
of the disease in this simulation is illustrated in Figure 10.

Up to day 365, the results obtained are identical to those
shown in Figure 5 and the maximum number of infected in-
dividuals is 719 on day 344. After the start of vaccination,
there is the lowest peak among all the simulations, with only
515 infected simultaneously on day 528. Figures 11a and
11b illustrate this peak of infected people and the population
distribution at the end of the simulation, respectively.

Contrary to the large waves of infection that were observed
mainly in Figures 3a and 6a, those infected seem to be more
spread out and fewer in this simulation, showing that vacci-
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Figure 10: Result of the fourth simulation, with confinement and
vaccination.
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Figure 11: Spatial distributions of the simulation with
confinement and vaccination.

nation and confinement managed to curb a little the spread of
the disease. Still in this simulation, the lowest average of in-
fected per day was reached, 282.9. A summary of the results
obtained in the simulations, considering the peak of infected
people after the start of vaccination in the cases in which it
was carried out, is presented in Table 2.

Table 2: Summary of simulation results

Simulation 1 2 3 4
Number of deaths 403 403 306 261
Peak of infected 1255 837 523 515
Average number of infected | 405.7 398.1 301.7 282.9

Analyzing the table, it is possible to observe that in the
second simulation, where there was only confinement, there
was no reduction in the number of deaths and the average of
infected was less than 2% lower, but the peak of infected was
reduced by about 33% when compared to the case without
any containment measures.

Meanwhile, considering only vaccination, there was a
24% reduction in the number of deaths, a 58% reduction in
the maximum number of simultaneous infections and an av-

erage number of infected people almost 26% lower. Finally,
in the simulation with both containment measures, 35%
fewer deaths, 59% lower peak of infected people and 30%
lower average number of infected people were observed.

4 FINAL CONSIDERATIONS

In this work, the authors developed a cellular automaton
based on a SCEIRDV compartmental model to simulate the
evolution of COVID-19 using parameters based on real stud-
ies on the disease. Analyzing the results summarized in Ta-
ble 2, it is possible to observe that the implementation of
confinement and vaccination measures separately has already
caused a reduction in some infection and mortality rates, but
the joint application of these two measures has reduced them
the number of deaths at about 35%, the peak of infected at
almost 59% and the average of infected at more than 30%,
being the most favorable strategy among those analyzed.

In future work, there are several implementations that can
be considered, such as changing the infection and/or mortal-
ity rates over time to consider the different variants of the
disease, for example. In addition, a completely stochastic
model can be built for comparison and the scenario in which
vaccinated people can also be infected can be considered. Fi-
nally, another idea is to introduce houses or clusters into the
model, to directly consider the possibility of exposure to the
disease through other individuals living in the same environ-
ment.
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ABSTRACT

Cells are exposed to mechanical stresses, whether through external forces that are applied to tissues or endogenous forces
that are generated within the active cytoskeleton. The differences in the stimuli are sensed by cells and controlled by a
network of focal adhesion proteins that regulate signaling pathways and determine cellular responses including cell motility,
proliferation, and cell differentiation (cell fate). Together the ability of cells to sense and respond to mechanical stimuli
governed by mechanosensors and mechanosignaling proteins can be termed mechanotransduction. Whilst there is intense
ongoing research on specific pathways involved in mechanoresponse mechanisms, the experiments alone can only give a
global overview of dynamic parameters for the interaction of proteins. The focal adhesion pathway is a complex network
and the use of stochastic mathematical algorithms can be an efficient tool to expand and explore this network by building
and solving a regulatory interaction map. Exploring the predicted interaction networks can suggest new directions for future
experimental research and provide cross-species predictions for efficient interaction mapping. Here we aim to describe the
network representing a subset of proteins associated with focal adhesion using the stochastic model Chemical Master Equation
and shed further light on how the dynamic of these proteins can directs cell behavior and responses. Our results showed that
our model is able to describe the experimental interactions. In addition, it is able to model the temporal cascade of events
related to responses to mechanical stimuli and showed different dynamical behaviors based on the kinetic parameters.

Keywords:

Chemical Master equation, Focal Adhesion, Signaling Networks, Stochastic Model

RESUMEN

Las células estdn expuestas a tensiones mecdnicas, ya sea a través de fuerzas externas aplicadas a los tejidos o fuerzas endo-
genas generadas dentro del citoesqueleto activo. Las diferencias en los estimulos son percibidas por las células y controladas
por una red de proteinas de adhesién focal que regulan las vias de sefializacién y determinan respuestas celulares, incluida
la movilidad celular, la proliferacién y la diferenciacién celular (destino celular). En conjunto, la capacidad de las células
para percibir y responder a estimulos mecénicos, gobernada por mecanosensores y proteinas de sefializacion mecénica, puede
denominarse mecanotransduccién. Si bien hay una intensa investigacidn en curso sobre las vias especificas involucradas en
los mecanismos de respuesta mecdnica, los experimentos por si solos solo pueden proporcionar una vision general de los
pardmetros dindmicos para la interaccién de las proteinas. La via de adhesién focal es una red compleja y el uso de algorit-
mos matematicos estocdsticos puede ser una herramienta eficiente para expandir y explorar esta red mediante la construccién
y resolucion de un mapa de interaccién reguladora. La exploracién de las redes de interaccion predichas puede sugerir nuevas
direcciones para futuras investigaciones experimentales y proporcionar predicciones entre especies para mapeos de interac-
cién eficientes. Aqui nuestro objetivo es describir la red que representa un subconjunto de proteinas asociadas a la adhesién
focal utilizando el modelo estocéstico de la Ecuacién Maestra Quimica y arrojar mas luz sobre cémo la dindmica de estas
proteinas puede dirigir el comportamiento y las respuestas celulares. Nuestros resultados mostraron que nuestro modelo es
capaz de describir las interacciones experimentales. Ademads, puede modelar la cascada temporal de eventos relacionados
con respuestas a estimulos mecdnicos y mostr6 diferentes comportamientos dindmicos basados en los pardmetros cinéticos.

Palabras Claves:

Ecuacion Maestra Quimica, Adhesion Focal, Redes de Sefializacién, Modelo Estocastico
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1 INTRODUCTION

uman anatomy consists of various types of tissues,
H ranging from the very soft gyri and sulci of the brain
to the very hard rigid trabeculae of bones ?. In our tissues,
cells experience numerous mechanical stimuli, for example,
shear stresses from the blood flow or stretching and com-
pression forces from several tissues associated with muscle
activity ?. Adherent cells respond very sensitively not only
to biochemical but also to the physical properties of their en-
vironment. For example, it has been shown that stem cell
differentiation can be guided by substrate rigidity, which is
sensed by cells by actively pulling on their environment with
actomyosin-generated forces ?. Force, therefore, plays an
important role in the shaping, development, and maintenance
of tissues and organs. Virtually all organisms have evolved
structures from the macroscale (organs, tissues) to the mi-
croscale (cells) and nanoscale (molecular assemblies, single
proteins) that are sensitive and responsive to myriad forces,
including compressive, tensile, shear stress, and hydrostatic
pressure ???.
The ability of cells to sense and respond to mechanical stim-
uli is termed mechanotransduction ?, including not only all
components of force, stress, and strain but also substrate
rigidity, topology, and adhesiveness. This ability is crucial
for the cell to respond to the surrounding mechanical cues
and adapt to the changing environment ??. Cells sense their
microenvironment using a variety of receptors. Integrins are
one of the most prominent receptor families that bind pro-
teins of the extracellular matrix (ECM), which consist of fi-
brous protein filaments that are organized in aligned fibers
(e.g. co-aligned fibers in forming tendons) or highly orga-
nized membranous networks (e.g. the basement membranes
underneath of epithelial cell layers). The organization, the
biochemistry, and the mechanical properties of integrins de-
pend on the type of ECM proteins they are assembled with.
With their intracellular domains, integrins associate with a
large number of proteins (focal adhesion plaque proteins)
that link them to the contractile actomyosin cytoskeleton
???. These multiprotein complexes appear as focused ad-
hesion structures when observed under the fluorescence mi-
croscope and hence are called focal adhesions (FAs) (Figure
1) 2222
Upon binding to ECM integrins become activated and form
initial clusters at the cell membrane. Mechanical forces can
support the integrin activation process involving conforma-
tional changes of the receptor that promotes not only high-
affinity interaction with the ECM but also induces the re-
cruitment of a number of proteins to the intracellular inte-
grin cytoplasmic domain. Two of the critical proteins that
connect integrins with the actin cytoskeleton are the adapter
proteins talin and vinculin. Because of the key role sensing
of their mechanical environment, talin and vinculin are often
described as mechanosensors and they have multiple bind-
ing sites for other proteins. Talin for example, in addition to
vinculin, binds to the focal adhesion kinase (FAK), paxillin,
RIAM, DLC1, actin, and others ??; vinculin binds to ponsin,

vinexin (a+b), CAP, Arp/2/3, paxillin, and actin ???. Some
of these proteins, i.e. FAK and paxillin together with the
SRC kinase trigger signaling pathways that regulate down-
stream the family of RhoGTPAses, a protein family that gov-
erns actin polymerization (i.e. through Rac1) and/or myosin-
mediated actin bundling and contraction (i.e. RhoA). The
latter group of proteins can thus be regarded as mechanosig-
nalling proteins that translate the mechanosensory informa-
tion into chemical signals that coordinate specific cellular re-
sponses.

There are many other proteins besides those mentioned
above that contribute to mechanotransduction (Figure 1). In
fact, mass spectroscopy experiments have identified more
than 2,000 proteins and around 60 of them belong to the core
adhesion proteins that are directly involved in cell-matrix ad-
hesion regulation 2????. How they work together and co-
ordinate the process of cell-matrix communication is yet un-
clear.

The trove of quantitative data produced by modern biology
has highlighted that the complex behaviors of biological sys-
tems, even the simplest ones, are difficult to comprehend
with experiments alone ?. These systems are not isolated, but
rather subject to intrinsic and extrinsic fluctuations, which
leads to a quasi-equilibrium state (homeostasis) ???. An in-
creasing number of experimentalists appreciate the need for
mathematical modeling to explain their data and uncover the
underlying molecular mechanisms for their biological sys-
tems ?.

As illustrated in Figure 1 the focal adhesion pathway is a
complex network and the use of stochastic mathematical
algorithms can be an efficient tool to expand and explore
this network by building and solving a regulatory interac-
tion map. Protein-protein interaction networks are an impor-
tant ingredient for the system-level understanding of cellu-
lar processes. Exploring the predicted interaction networks
can suggest new directions for future experimental research
and provide cross-species predictions for efficient interaction
mapping.

Here we propose using the Chemical Master Equation to un-
derstand the dynamic interactions between proteins in the
focal adhesion. We specifically show how the biochemical
network involving extracellular matrix stimuli can lead to
actin polymerization and focal adhesion formation. Next we
present the detailed methodology to build the biochemical
network and how to build the stochastic model.

2 METHODOLOGY

SIGNALING NETWORK FOR FOCAL ADHESION PRO-
TEINS

We built a signaling network considering the interaction be-
tween the focal adhesion proteins FAK, SRC, Rac, Rho,
Myosin light-chain (MLC), that leads to actin polymerization
and focal adhesion formation (Figures 1 and 2). We choose
specifically these proteins because they are involved in many
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Figure 1: Top: Schematic representation of focal adhesion formation. Botton: Signaling pathway map for focal adhesion proteins. This
figure is a reproduction of the network generated by the Kyoto Encyclopedia of Genes and Genomes (KEGG) (
https://www.genome. jp/pathway/map04510 ) for focal adhesion. The proteins modeled in this paper are highlighted.

important cellular processes, including health and disease.
FAK-SRC interaction is crucial for the initiation and regula-
tion of focal adhesions ?. Furthermore, FAK, plays a role in
promoting growth factor— and integrin-stimulated cell motil-
ity in both normal and transformed cells and increased FAK
expression are connected with elevated tumorigenesis ?. SRC
activity has a role in normal vascular smooth muscle con-
tractile function and in vascular remodeling in cardiovascu-
lar disease ?. Rho/ROCK pathway is involved in synapses in
pathological situations such as spinal cord injury/ischemia,
Alzheimer’s disease, Parkinson’s disease, multiple sclerosis,
amyotrophic lateral sclerosis (ALS), and spinal muscular at-
rophy (SMA) ?. And abnormal activation of Rho kinase sig-
naling is closely associated with major cardiovascular dis-
eases such as systemic hypertension, pulmonary hyperten-
sion, vasospasm, and adverse cardiac remodeling ?.

In our study, the signaling network of proteins and their in-
teractions are constructed based on published data, the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database and
the database for protein-protein interactions Search Tool for
the Retrieval of Interacting Genes/Proteins (STRING) ?. In
our model, each state of the proteins is considered as one
component of the network (for example FAK protein (FAK)
and FAK phosphorylated (p — FAK), Figure 2). Multiple
types of interactions are taken into account, both positive (ac-
tivation, phosphorylation) and negative (inhibition).

Our model is composed of three circuits (Figures 1 and
2): The initial activation by the extracellular matrix and the
membrane protein Integrin [8-14] which activates both FAK

and SRC. FAK and SRC form a positive feedback loop ?.
FAK and SRC are connected with the second circuit, the Rho
family, FAK activates RhoGEF and SRC activates RhoGAP.
RhoGAP inhibits and RhoGEF activates RhoA ?. RhoA in-
directly activates MLC ?. The cell fate is actin polymeriza-
tion that will lead to focal adhesion formation ?. Valencia-
Expdsito et. al ? proved that actomyosin contractility is
controlled primarily by reversible phosphorylation of the
myosin-II regulatory light chain (MLC) through the action
of myosin kinases and phosphatases. Their results demon-
strate that actomyosin oscillations in which the combination
of cooperative binding of actin filaments in conjunction with
actin filament dissociation from the bundle, due to myosin-
induced tension, is sufficient to generate cell-autonomous os-
cillations in myosin and F-actin content. With these results
here we are associating the behavior of MLC with the actin,
which is the output of the model. This signaling network is
used to build the stochastic mathematical model as presented
in the next section.

MATHEMATICAL MODEL FOR PROTEIN INTERACTIONS

In biochemistry, Michaelis—Menten kinetics is the simplest
case of enzyme kinetics, applied to enzyme-catalysed reac-
tions of one substrate and one product ?. It takes the form
of an equation describing the rate reaction rate v (rate of
formation of product P, with concentration [P]) to [S], the
concentration of the substrate S Its formula is given by the

doi: 10.58560/rmmsb.v03.n02.023.04
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Figure 2: Network considering the pathway of proteins involved in the ECM mediated mechanosensing leading to actin polymerization.
The numbers correspond to the equations in Table 1.

Michaelis—Menten equation:

_dp _ ksp[S][P] 1)
~dt Kn+[P|
where V = kgp[S] represents the limiting rate approached by
the system at saturating substrate concentration for a given
enzyme concentration. When the value of the Michaelis con-
stant K, is numerically equal to the substrate concentration,
the reaction rate is half of V 2.
This kind of approach can be used to model protein-protein
interactions as we are interested in this paper. To illustrate
how to build the system with differential equations to de-
scribe the interactions we brought three kinds of examples in
Figure 3. Let’s consider that we have two types of proteins
A and B, which can interact as represented in Figure 3. For
our network, we can represent the interactions as (1) A — B,
where protein A activates protein B, such a process can be
represented by a Michaelis-Menten reaction equation. The
concentration of protein B, which is represented as [B] in-
creases as the product of protein A and the transition rate of
activation of B by A that is represented by k4p in Table 1. (2)
B — A represents the Degradation of protein B to A with a
rate kg4 in Table 1. (3)A — B represents the inhibition of B
due to A. This dynamic interaction is also represented by a
Michaelis-Menten equation such as represented in Table 1.
Taking the interactions for our network in Figure 2, we

kap
A g =

Figure 3: Mathematical representation of a biochemical network.
(a) Activation and degradation of proteins. (b) Inhibition of
proteins.

k
n::ij’ (a)

B A

have the equations corresponding to each interaction in Table
1 in the Appendix. With these equations representing the
interactions, we can build a system of differential equations
to study the time evolution of the network in Figure 2, as
follows.

Table 1: List of equations for each reaction represented in
Figure 3.

Reaction | Equation  Reaction kind
A—B %% Activation
J
B—A kpa[B]  Degradation
TaslA[B] .
A—B k18] Inhibition
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d[FAK?] _ kg ([ECMINT] - [p — MLC))[FAK]

dt ki + [FAK]
krrr [FAK][p — FAK] | ksprr[p — SRC][FAK]
ks +[p — FAK] k7 + [FAK]
~ kporlp — FAK] — ¥ ]EI: . Eelé]][SRC]
_ kerrnoGeF [P — FAK][RhoGEF |
ks + [RhoGEF]

d[SRC”] _ kpso ([ECMINT) ~ [p — MLC])[SRC]

d k2 + [SRC]
kppsp|p — FAK][SRC]  kss»[SRC]|p — SRC]
k4 + [SRC] ke + [p — SRC]
ksprr[p — SRC][FAK] = kspriogap|p — SRC][RhoGAP)
B k7 — [FAK] ko + [RhoGAP]

d[RhOGEF] - kFl’RhoGEF [p — FAK] [RhOGEF]
a ks + [RhoGEF)
. thoGEFRhoA [RhOGEF] [RhOA]
kio+ [RhoA}

d[RhoGAP|  ksrrhoGar[p — SRC][RhoGAP]
d ko + [RhoGAP)
- thoGAPRhoA [R/’ZOGAP] [RhOA]
k11 + [RhoA]

d[RhoA]  krnoGEFRoA[RhOGEF|[RhoA]
d ko -+ [RhoA]
_ thnGAPRhoA [R/’ZOGAP] [RhOA]
k11 + [RhoA]

dlp—MLC] _ krmoamrcr [RhoA]|[MLC]

dt ko + [MLC]
kMLCPMLCP [MLC] [p — MLC]
—k —MLC
+ ki + [MLC] mrcPmrclP ]

The term [ECMINT| — [p — MLC] in the equations repre-
sents the negative feedback that the actin polymerization will
send to the extracellular matrix. In nature, the signal is not
continuous and stops once the actin polymerization starts and
it is represented by the balance between the extracellular ma-
trix concentration [ECM] and the actin signal [p — MLC] ?.
We are assuming the conservation of proteins and the con-
centrations of inactive FAK, SRC, and MLC can be derived
from the total number of molecules and the number of phos-
phorylated proteins. Next, we discuss how to build the
stochastic model from the differential equations.

CHEMICAL MASTER EQUATION FOR THE DESCRIP-
TION OF PROTEIN MECHANOSIGNALING

The Chemical Master Equation is a class of discrete-state,
continuous-time Markov processes that describe the time
evolution of a system that can be modeled as a probabilistic
combination of states ?. For the mechanosignaling network
(Figure 2) the states are represented by the concentration
of proteins in inactive, or active states usually determined
by phosphorylation and/or conformational changes. The
concentration of proteins is modeled as temporal variables
assuming positive values represented by [protein], that is
the number of individuals in each protein state, for exam-
ple, the number of molecules in inactive FAK ([FAK]) or
phosphorylated FAK ([p — FAK]). The time evolution of the
variable’s concentrations is modeled by rates representing

—ksps[p— SRC]—F—heif interactions, where activation rates represent the

interactions for which there is an increase in the protein
concentration, for example, the increment in the concentra-
tion of phosphorylated SRC ([p — SRC]) due to ks and the
inhibition rates represent the interactions for which there is
a decrease in the concentration of the protein, for example in
the dephosphorylation of phosphorylated MLC ([p — MLC])
due to ky;pcrpp e (Figure 2). It is important to note that
the system of equations describes one protein concentra-
tion in correspondence with the concentration of the others
??. The chemical master equation for the system is written as

7dp([p(r;tem]) = r([protein] + 1,t) p([protein] + 1,1)+

+g([protein] — 1,t) p([protein] — 1,t)+ )
_(r(nproteimt) +g(nprotein>t))p(nprotein7t)

Where each protein is represented by a combination of the
gain term (g([protein],t)) responsible for the increment of
the concentration of the protein ([protein] to [protein] + 1)
and the recombination term (r([protein],t)) responsible for
the decrease of the concentration of the protein ( [protein]
to [protein] — 1), the generation and recombination of each
protein are described in Table 2. p([protein],t) is the occu-
pation probability per unit of time of a determined state in
the system. In our case, it is represented by the concentra-
tion of a protein. The generation and recombination terms
used to build the stochastic model using the chemical master
equation for each reaction in our network (Figure 2) are rep-
resented in Table 2.

3 RESULTS: SOLUTION OF THE PATHWAY
LEADING TO ACTIN POLYMERIZATION

Here we are interested in exploring the signaling network of
focal adhesion proteins leading to actin polymerization and
focal adhesion formation (Figures 1 and 2) to illustrate the
use of stochastic models such as the Chemical Master Equa-
tion for the understanding of protein interactions leading to
different cell fates. The network was built considering the
interaction between the focal adhesion proteins (see Section

doi: 10.58560/rmmsb.v03.n02.023.04
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Table 2: List of generation and recombination terms used to build the stochastic model using the chemical master equation.

Protein Chemical Master equation term
»—FAK | g(lp—FAK],1) — kEFp([ECMIkNT][;TKzI;]MLC])[FAK] n kFF],; [F/?K] %;;fm n kSpr]E[)*[SFIIZCIE FAK]
? 1+ 3P 7+
kgp FAK||SRC| k 0 FAK||RhoGEF
p—FAK r([p— FAK],t) = kgrp[p — FAK] + Sp/£p+[SRc]}[ L4 e GiFE’[RhoGIIV[F] —
»—SRC | a(lp—SRCl1) = km([ECMu]:/T] [S%)C] MICISRC] kr,rg/zipfé.;lé]l[SRC] n kggz [SR[C] [,;;gfc]
’ 2+ 4+ 6+ |P—
kgp —SRC|[FAK ksp RhoG. —SRC|[RhoGAP
p—SRC r([p —SRC],t) = ksrs[p — SRC] + = Fp£f+[FA1;][ 1+ fom O;Z[-f[khocl/x[i’]o ]
Krrrio —FAK][RhoGEF
RhoGEF g([RhoGEF),r) = ~L& GigJ[f[RhoGJ]E[F]m ]
KrioGEFRion|RROGEF |[RhoA]
RhoGEF r([RhoGEF],t) = = GEFRZ.?HRMA]
Ksrrm SRC|[RIhoGAP
RhoGAP 8([RhoGAP] 1) = =riece —OI—][RhoG}iP]w ]
Ko oA [RhoGAP][RhoA]
RhoGAP r([RhoGAP),t) = i K (Apsziz[g}g)ﬁ]][m .
104 10: 0 0.
- stlithor.) = :' OEFR;C:][J;?%M&)QL] [RhoA]
0GAPRhoA [RIO 0.
Kol V([R}w]:“ b= [1:; G:][&ﬁg] [Rh{;cA] [MLC|[p—MLC]
0. , _
p—MLC g([p—MLCl,t) = RHOA/ZL,Z: [MLC]| + MLCPM[/?,;HMLC?
MLCP r(lp —MLC),t) = kypcrmrclp — MLC]

2) and the solution for the dynamic interactions of the pro-
teins is given by the solution of the Chemical Master Equa-
tion (Eq. 2) with the corresponding generation and recom-
bination terms (as shown in Section 2). The output of this
model is the dynamic interactions of proteins, which can be
seen as the distribution of molecules in each protein state per
time (Figure 4). The system of equations is solved numeri-
cally using the Gillespie algorithm ??. The input parameters
are the initial distribution of proteins, the total time of sim-
ulation, and the values of the transition rates (see Tables 3
and 4 for details). Experiments alone cannot give exactly the
values of protein concentration or transition rates, because
the methodologies used to describe protein dynamics such as
Fluorescence recovery after photobleaching (FRAP) or sin-
gle molecule tracking follows one protein at a time and only
tag a sub-population of proteins due to diffraction effects
???. But we used experimental data to estimate the range of
transition rate values and initial protein concentration used in
the simulations ????.

In Figure 4 we show the results for Case 1 in Tables 3 and
4. We can see that p — FAK and p — SRC are the first to
be activated, followed by the Rho family and later by MLC
and p — MLC (Figure 4a). This cascade effect behaves as ex-
pected by the construction of the model and the experimental
information we had about the system. The higher values of
the transition rates kgrr, kpsp and kppp were chosen to guar-
antee that these reactions would happen often and coordinate
all the other events. In Figure 4b we have the detailed behav-
ior for all 4 circuits in our model. The results showed that the
activity of FAK and p — FAK occurs only at the beginning of
the process (Figure 4b(i)) and p — FAK reached its peak ac-
tivity at around 30 MCS. SRC and p — SRC continue to be
activated longer in simulation (Figure 4b(ii)), and p — SRC
achieved its peak at around 1300MCS. Another interesting
behavior we can observe for p — SRC is that it has other peaks
later in time, meaning that it is activated in waves. The acti-
vation of RhoGAP and RhoGEF (peaks at around 2600 MCS

and around 120 MCS respectively) leads to the activation of
RhoA, with maximum activity at around 1500 MCS. The cir-
cuit MLC-pMLC increased its activity later on reaching its
peak at around 3500 MCS for p — MLC. The concentration
of MLC goes to zero when the p — MLC reaches its stability.
This behavior is occurring because MLC is not regulated by
any other protein and its role is to activate p — SRC. Once
p —SRC is activated the protein degrades. It is interesting to
notice that the sequence of events is: activation of p — FAK
followed by activation of RhoGEF, then p — SRC followed
by RhoGAP and RhoA then the output p — SRC to reach sta-
bility (Figures 2 and Figure 4). For Case 1 MLC reaches a
plateau.

For the purpose of validation, we also tested a negative proof
for the model, where we considered ECM-INTO0=0, which is
equivalent to a null focal adhesion signal. In this scenario,
all the other parameters were maintained constant and it re-
sulted in a flat distribution and no interaction was observed
in the system (data not shown).

In Figure 5 results for perturbations are shown. We take into
account one perturbation at a time. In Figure 5a(i) we simu-
late the Case 2 in Tables 3 and 4. This case shows the effects
to take kgrr = 1 ten times greater than the reference in Case
1. It is equivalent to saying that the FAK would be more ac-
tivated than SRC from the extracellular signal. Comparing
Figure 5a(i) with Figure 4b(i), we can see that the concen-
tration of p — FAK is great for case 2 and also that the con-
centration of p — SRC is reduced. The results for the output
protein MLC and p — SRC are shown in Figure 5(b)(i). For
case 2 it also reached a plateau.

In Figure 5a(ii) we simulate the Case 3 in Tables 3 and
4. In this case, we increased the initial concentration of
FAKp = 20. The behavior of the proteins p — FAK and
p — SRC are not distinguishable from case 1 (Figures 5a(ii)
and 4). But the behavior of MLC changes, we can see that
p — SRC starts to oscillate around a mean value and it is not
a smooth plateau anymore.

doi: 10.58560/rmmsb.v03.n02.023.04
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In Figure Sa(iii) we simulate the Case 4 in Tables 3 and 4.
In this case, we increased the rate of interaction of SRC,
kgsr = 1. The concentration of the protein p — FAK de-
creases with respect to case 1 (Figures Sa(iii) and 4). We can
see that the amplitude of the oscillations of p — SRC decrease
in relation to those in case 3 (Figure 5b(ii)). Finally, in Figure
5a(iv) we simulate the Case 5 in Tables 3 and 4. In this case,
we increased the initial concentration of SRCy = 20. The
concentrations of p — FAK and p — SRC are not distinguish-
able from case 1 (Figures Sa(iv) and 4). We can see that the
amplitude of the oscillations of p — SRC have the same range
as in case 3 (Figure 5b(ii)).

doi: 10.58560/rmmsb.v03.n02.023.04
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Figure 4: Normalized distribution of proteins per Monte Carlo step (MCS). (a) Dynamic activation of key signaling proteins of the base
network. (b) The detailed dynamic of each circuit in the network: (i) FAK (ii) SCR (iii) Rho family and (iv) MLC was zoomed-in protein
concentration, for a max concentration of 0.05. All the plots show the mean of 10 simulations. For visualization purposes, each point
represents the mean of the concentration for 10-time steps. The parameters used for these simulations are detailed in Tables 3 and 4.
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Figure 5: Comparison of the perturbations made in the parameters of the model. (a) The concentration of the key proteins in the system
(p — FAK, p — SRC, RhoA and p — MLC) the figures show only the initial 400 MCS for the purpose to see how the early proteins are
behaving. (b) The concentration of proteins for the output MLC and p — MLC. The subdivision of the figures are (i) Case 2; (ii) Case 3;
(iii) Case 4 (iv) Case 5. The parameters used for these simulations are detailed in Tables 3 and 4.
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4 DISCUSSION

‘We proposed a stochastic mathematical model using the solu-
tion of the Chemical Master equation to understand the net-
work of proteins involving extracellular matrix stimuli that
can lead to actin polymerization and focal adhesion forma-
tion. Our signaling network was built considering the inter-
action between the focal adhesion proteins FAK, Src, Rac,
Rho, Myosin light-chain (MLC) (Figures 1 and 2). Our data
showed the capacity of the model to predict expected behav-
iors by reproducing a cascade of events and dependence on
the activation of proteins of a known signaling pathway, as
follows.

Our results have shown that FAK activity is lower than Src
activity (see figures 4 and 5), which confirms what was ex-
perimentally observed by Caron-Lormier and Berry ?. Fur-
thermore, we observed that the increase of activation rate of
p— FAK (Case 2, Figure 5a(i)) did not influence the dynamic
of other proteins, only the initial concentration of p — FAK.
A behavior that was observed experimentally by Stutchbury
et. al 2.

For cases 3, 4, and 5 oscillations in the dynamics of p — MLC
were observed (Figures 5b (ii), (iii) and (iv)). These oscilla-
tions are more evident in the cases we are varying the initial
concentration of FAK and SRC (Figures 5b (ii), and (iv), re-
spectively). Which can be associated with a stiff substrate
and higher protein recruitment to the focal adhesion. Stutch-
bury et. al ? showed that a modular composition of FAs with
the mobile behavior of protein subsets responded differently
when encountering environments of different rigidities.

In summary, we proposed a stochastic model considering the
dynamic of focal adhesion proteins leading to actin polymer-
ization. Our model was built in a combination of experimen-
tal and theoretical observations and was able to demonstrate
a variety of behaviors for the different proteins and circuits
within the network. Furthermore, we showed the effect of
variation in the parameters that can lead to different cell fates.
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APPENDIX

A LIST OF EQUATIONS FOR EACH INTERAC-
TION
The list of equations for each reaction represented in Figure

2. The indexes correspond to those in Figure 2, the equation
and the kind of reaction are also represented in the table.

B PARAMETERS FOR THE SIMULATIONS

The list of equations for each reaction represented in Figure
2. The indexes correspond to those in Figure 2, the equation
and the kind of reaction are also represented in the table.
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Table 3: List of equations for each reaction represented in Figure 2. The indexes correspond to those in Figure 2, the equation
and the kind of reaction are also represented in the table.

Index Reaction Equation Reaction kind
1| ECMINT — p—pag e (ECHTHTLIp MICIIEAR] pfichaelis-Menten
2 | ECMINT — p—src e (ECHIY Tj[*sg’g]’” LCNISRA Michaelis-Menten
3 FAK — p— FAK | Michaelis-Menten
4 | p—FAK—p—SRC berwlp KR Michaelis-Menten
5 SRC — p—SRC % Michaelis-Menten
6 p—FAK — FAK kprp|[p — FAK] Degradation
7 | p—SRC—p—FAK baerlp_SECIAE] Michaelis-Menten
8 p—SRC — SRC ksps[p — SRC] Degradation
9 | p—FAK > RHOGEF  rrmeatrlt, ERTOCELL— Michaelis-Menten
10 | p—SRC—RHOGAP  ‘ewesrbe UGl Miichaclis-Menten
11 | RHOGEF — RHOA Runscermo RIOGEFIRIOA]— \fichaelis-Menten
10+[RhoA]
12 | RHOGAP —RHOA e —_— Inhibition
13 | RHOA-p—MLC B K LATC Michaelis-Menten
14 | MLC—p-MLC bucrer IRCIMEC— Michaelis-Menten
15 p—MLC — MLC kyrermiclp —MLC) Degradation

Table 4: List of equations for each reaction represented in Figure 2. The indexes correspond to those in Figure 2, the equation
and the kind of reaction are also represented in the table.

Rate(/s) Case 1 Case 2 Case 3 Case 4
1| ECMINT — p—Fag  Fere(ECHTTIIp MICIEARL pfichaelis-Menten
2 ECMINT — p—SRC ~ *e[ECHIY ﬂ[;}gg]MLCmSRC] Michaelis-Menten
3 FAK — p— FAK % Michaelis-Menten
4 p—FAK — p—SRC fenlp- AR Michaelis-Menten
5 SRC — p—SRC % Michaelis-Menten
6 p— FAK — FAK kprp|p — FAK] Degradation
7 p—SRC — p—FAK barerlp - SRCIPAA] Michaelis-Menten
8 p—SRC — SRC ksps[p — SRC| Degradation
9 | p—FAK—RHOGEF  Trrmeatrll MEIRCCEEL Michaelis-Menten
10 | p—SRC—RHOGAP  “emsrllelpe®™  Michaelis-Menten
11 | RHOGEF — RHOA Cnsoceraoa[RIOGEFIRIOAT — Mfichaelis-Menten

10+H[RhoA]
12 RHOGAP — RHOA KroGarkioa [RhOGAP[[RIoA] Inhibition
ki1+[RhoA]
13 RHOA = p—MLC Banger oL L Michaelis-Menten
14 MLC — p — MLC fucomer WEIMEGL Michaelis-Menten
15 p—MLC — MLC kyrermiclp —MLC) Degradation
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