
https://revistammsb.utem.cl | revista.mmsb@utem.cl

ISSN-L: 2735-6817 | ISSN (online): 2735-6817

Revista de Modelamiento Matemático de Sistemas Biológicos
Vol.3(2023), No.E, pp.1–14, e23R05

https://doi.org/10.58560/rmmsb.v03.n02.023.04

Using the Chemical Master Equation to model the interaction
network of focal adhesion proteins

Utilizando la Ecuación Maestra Química para modelar la red
de interacción de las proteínas de adhesión focal.

Luciana Renata de Oliveira1, Júlia Vitória Ribeiro1 Alícia Groth Becker1,

Gabriel Vitorello1 and José Carlos Merino Mombach1

B Luciana Renata de Oliveira: lucianarenatadeoliveira@gmail.com

1 Departamento de Física, Centro de Ciências Naturais e Exatas,
Universiade Federal de Santa Maria,

Santa Maria, RS, Brasil

Recepción: 2023-06-01 | Aceptación: 2023-09-10 | Publicación: 2023-10-29

Recommended Citation: Renata de Oliveira, L. et al. ( 2023). ‘Using the Chemical Master Equation to model the interaction network of focal adhesion
proteins’. Rev. model. mat. sist. biol. 3(E), e23R05, doi:10.58560/rmmsb.v03.n02.023.04

This open access article is licensed under a Creative
Commons Attribution International (CC BY 4.0) http://creativecommons.org/licenses/by/4.0/.
Support: PIBIC No. 21-2022, PROA 23-25551-0001199-9 (2023)

https://utem.cl
https://revistammsb.utem.cl
mailto:revista.mmsb@utem.cl
https://revistammsb.utem.cl
https://doi.org/10.58560/rmmsb.v03.n02.023.04
https://orcid.org/0000-0002-0546-4416
https://orcid.org/0009-0007-6722-0488
https://orcid.org/0009-0006-0931-8332
https://orcid.org/0009-0000-2744-1058
https://orcid.org/0000-0002-6602-3905
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


REVISTA DE MODELAMIENTO MATEMÁTICO DE SISTEMAS BIOLÓGICOS, Vol.3( 2023), NoE, e23R05 2 of 14

ABSTRACT

Cells are exposed to mechanical stresses, whether through external forces that are applied to tissues or endogenous forces
that are generated within the active cytoskeleton. The differences in the stimuli are sensed by cells and controlled by a
network of focal adhesion proteins that regulate signaling pathways and determine cellular responses including cell motility,
proliferation, and cell differentiation (cell fate). Together the ability of cells to sense and respond to mechanical stimuli
governed by mechanosensors and mechanosignaling proteins can be termed mechanotransduction. Whilst there is intense
ongoing research on specific pathways involved in mechanoresponse mechanisms, the experiments alone can only give a
global overview of dynamic parameters for the interaction of proteins. The focal adhesion pathway is a complex network
and the use of stochastic mathematical algorithms can be an efficient tool to expand and explore this network by building
and solving a regulatory interaction map. Exploring the predicted interaction networks can suggest new directions for future
experimental research and provide cross-species predictions for efficient interaction mapping. Here we aim to describe the
network representing a subset of proteins associated with focal adhesion using the stochastic model Chemical Master Equation
and shed further light on how the dynamic of these proteins can directs cell behavior and responses. Our results showed that
our model is able to describe the experimental interactions. In addition, it is able to model the temporal cascade of events
related to responses to mechanical stimuli and showed different dynamical behaviors based on the kinetic parameters.
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RESUMEN

Las células están expuestas a tensiones mecánicas, ya sea a través de fuerzas externas aplicadas a los tejidos o fuerzas endó-
genas generadas dentro del citoesqueleto activo. Las diferencias en los estímulos son percibidas por las células y controladas
por una red de proteínas de adhesión focal que regulan las vías de señalización y determinan respuestas celulares, incluida
la movilidad celular, la proliferación y la diferenciación celular (destino celular). En conjunto, la capacidad de las células
para percibir y responder a estímulos mecánicos, gobernada por mecanosensores y proteínas de señalización mecánica, puede
denominarse mecanotransducción. Si bien hay una intensa investigación en curso sobre las vías específicas involucradas en
los mecanismos de respuesta mecánica, los experimentos por sí solos solo pueden proporcionar una visión general de los
parámetros dinámicos para la interacción de las proteínas. La vía de adhesión focal es una red compleja y el uso de algorit-
mos matemáticos estocásticos puede ser una herramienta eficiente para expandir y explorar esta red mediante la construcción
y resolución de un mapa de interacción reguladora. La exploración de las redes de interacción predichas puede sugerir nuevas
direcciones para futuras investigaciones experimentales y proporcionar predicciones entre especies para mapeos de interac-
ción eficientes. Aquí nuestro objetivo es describir la red que representa un subconjunto de proteínas asociadas a la adhesión
focal utilizando el modelo estocástico de la Ecuación Maestra Química y arrojar más luz sobre cómo la dinámica de estas
proteínas puede dirigir el comportamiento y las respuestas celulares. Nuestros resultados mostraron que nuestro modelo es
capaz de describir las interacciones experimentales. Además, puede modelar la cascada temporal de eventos relacionados
con respuestas a estímulos mecánicos y mostró diferentes comportamientos dinámicos basados en los parámetros cinéticos.
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1 INTRODUCTION

H uman anatomy consists of various types of tissues,
ranging from the very soft gyri and sulci of the brain to

the very hard rigid trabeculae of bones Atherton et al. (2016).
In our tissues, cells experience numerous mechanical stimuli,
for example, shear stresses from the blood flow or stretching
and compression forces from several tissues associated with
muscle activity Jansen et al. (2017). Adherent cells respond
very sensitively not only to biochemical but also to the physi-
cal properties of their environment. For example, it has been
shown that stem cell differentiation can be guided by sub-
strate rigidity, which is sensed by cells by actively pulling on
their environment with actomyosin-generated forces Roca-
Cusachs et al. (2013). Force, therefore, plays an important
role in the shaping, development, and maintenance of tis-
sues and organs. Virtually all organisms have evolved struc-
tures from the macroscale (organs, tissues) to the microscale
(cells) and nanoscale (molecular assemblies, single proteins)
that are sensitive and responsive to myriad forces, including
compressive, tensile, shear stress, and hydrostatic pressure
Jansen et al. (2017); Atherton et al. (2016); Roca-Cusachs
et al. (2013).
The ability of cells to sense and respond to mechanical
stimuli is termed mechanotransduction Kanchanawong et al.
(2010), including not only all components of force, stress,
and strain but also substrate rigidity, topology, and adhesive-
ness. This ability is crucial for the cell to respond to the
surrounding mechanical cues and adapt to the changing en-
vironment Nagano et al. (2012); Del Rio et al. (2009). Cells
sense their microenvironment using a variety of receptors.
Integrins are one of the most prominent receptor families that
bind proteins of the extracellular matrix (ECM), which con-
sist of fibrous protein filaments that are organized in aligned
fibers (e.g. co-aligned fibers in forming tendons) or highly
organized membranous networks (e.g. the basement mem-
branes underneath of epithelial cell layers). The organiza-
tion, the biochemistry, and the mechanical properties of inte-
grins depend on the type of ECM proteins they are assembled
with. With their intracellular domains, integrins associate
with a large number of proteins (focal adhesion plaque pro-
teins) that link them to the contractile actomyosin cytoskele-
ton Hirata et al. (2014); Roca-Cusachs et al. (2013); Nagano
et al. (2012). These multiprotein complexes appear as fo-
cused adhesion structures when observed under the fluores-
cence microscope and hence are called focal adhesions (FAs)
(Figure 1) Atherton et al. (2016); Jansen et al. (2017); Roca-
Cusachs et al. (2013); Nagano et al. (2012).
Upon binding to ECM integrins become activated and form
initial clusters at the cell membrane. Mechanical forces can
support the integrin activation process involving conforma-
tional changes of the receptor that promotes not only high-
affinity interaction with the ECM but also induces the re-
cruitment of a number of proteins to the intracellular inte-
grin cytoplasmic domain. Two of the critical proteins that
connect integrins with the actin cytoskeleton are the adapter
proteins talin and vinculin. Because of the key role sensing

of their mechanical environment, talin and vinculin are often
described as mechanosensors and they have multiple bind-
ing sites for other proteins. Talin for example, in addition to
vinculin, binds to the focal adhesion kinase (FAK), paxillin,
RIAM, DLC1, actin, and others Hirata et al. (2014); Kumar
et al. (2016); vinculin binds to ponsin, vinexin (a+b), CAP,
Arp/2/3, paxillin, and actin Carisey et al. (2013); Del Rio
et al. (2009); Chen et al. (2006). Some of these proteins,
i.e. FAK and paxillin together with the SRC kinase trigger
signaling pathways that regulate downstream the family of
RhoGTPAses, a protein family that governs actin polymer-
ization (i.e. through Rac1) and/or myosin-mediated actin
bundling and contraction (i.e. RhoA). The latter group of
proteins can thus be regarded as mechanosignalling proteins
that translate the mechanosensory information into chemical
signals that coordinate specific cellular responses.
There are many other proteins besides those mentioned
above that contribute to mechanotransduction (Figure 1). In
fact, mass spectroscopy experiments have identified more
than 2,000 proteins and around 60 of them belong to the core
adhesion proteins that are directly involved in cell-matrix
adhesion regulation Kanchanawong et al. (2010); Ather-
ton et al. (2016); Hirata et al. (2014); Roca-Cusachs et al.
(2013); Chen et al. (2006). How they work together and co-
ordinate the process of cell-matrix communication is yet un-
clear.
The trove of quantitative data produced by modern biology
has highlighted that the complex behaviors of biological sys-
tems, even the simplest ones, are difficult to comprehend
with experiments alone De Oliveira (2014). These systems
are not isolated, but rather subject to intrinsic and extrinsic
fluctuations, which leads to a quasi-equilibrium state (home-
ostasis) Van Kampen (1992); De Oliveira (2014); Aguda and
Friedman (2008). An increasing number of experimental-
ists appreciate the need for mathematical modeling to explain
their data and uncover the underlying molecular mechanisms
for their biological systems Berro (2018).
As illustrated in Figure 1 the focal adhesion pathway is a
complex network and the use of stochastic mathematical
algorithms can be an efficient tool to expand and explore
this network by building and solving a regulatory interac-
tion map. Protein-protein interaction networks are an impor-
tant ingredient for the system-level understanding of cellu-
lar processes. Exploring the predicted interaction networks
can suggest new directions for future experimental research
and provide cross-species predictions for efficient interaction
mapping.
Here we propose using the Chemical Master Equation to un-
derstand the dynamic interactions between proteins in the
focal adhesion. We specifically show how the biochemical
network involving extracellular matrix stimuli can lead to
actin polymerization and focal adhesion formation. Next we
present the detailed methodology to build the biochemical
network and how to build the stochastic model.
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Figure 1: Top: Schematic representation of focal adhesion formation. Botton: Signaling pathway map for focal adhesion proteins. This
figure is a reproduction of the network generated by the Kyoto Encyclopedia of Genes and Genomes (KEGG) (

https://www.genome.jp/pathway/map04510 ) for focal adhesion. The proteins modeled in this paper are highlighted.

2 METHODOLOGY

SIGNALING NETWORK FOR FOCAL ADHESION PRO-
TEINS

We built a signaling network considering the interaction be-
tween the focal adhesion proteins FAK, SRC, Rac, Rho,
Myosin light-chain (MLC), that leads to actin polymerization
and focal adhesion formation (Figures 1 and 2). We choose
specifically these proteins because they are involved in many
important cellular processes, including health and disease.
FAK-SRC interaction is crucial for the initiation and regula-
tion of focal adhesions Roca-Cusachs et al. (2013). Further-
more, FAK, plays a role in promoting growth factor– and
integrin-stimulated cell motility in both normal and trans-
formed cells and increased FAK expression are connected
with elevated tumorigenesis Hsia et al. (2003). SRC activ-
ity has a role in normal vascular smooth muscle contractile
function and in vascular remodeling in cardiovascular dis-
ease MacKay and Knock (2015). Rho/ROCK pathway is in-
volved in synapses in pathological situations such as spinal
cord injury/ischemia, Alzheimer’s disease, Parkinson’s dis-
ease, multiple sclerosis, amyotrophic lateral sclerosis (ALS),
and spinal muscular atrophy (SMA) Martin-Camara et al.
(2021). And abnormal activation of Rho kinase signaling is
closely associated with major cardiovascular diseases such as
systemic hypertension, pulmonary hypertension, vasospasm,
and adverse cardiac remodeling Dai et al. (2018).
In our study, the signaling network of proteins and their in-
teractions are constructed based on published data, the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database and
the database for protein-protein interactions Search Tool for
the Retrieval of Interacting Genes/Proteins (STRING) Szk-
larczyk et al. (2019). In our model, each state of the proteins
is considered as one component of the network (for exam-
ple FAK protein (FAK) and FAK phosphorylated (p−FAK),
Figure 2). Multiple types of interactions are taken into ac-
count, both positive (activation, phosphorylation) and nega-
tive (inhibition).
Our model is composed of three circuits (Figures 1 and
2): The initial activation by the extracellular matrix and
the membrane protein Integrin [8-14] which activates both
FAK and SRC. FAK and SRC form a positive feedback loop
Caron-Lormier and Berry (2005). FAK and SRC are con-
nected with the second circuit, the Rho family, FAK acti-
vates RhoGEF and SRC activates RhoGAP. RhoGAP in-
hibits and RhoGEF activates RhoA Pertz (2010). RhoA in-
directly activates MLC Lessey et al. (2012). The cell fate is
actin polymerization that will lead to focal adhesion forma-
tion Soriano et al. (2021). Valencia-Expósito et. al Valencia-
Expósito et al. (2016) proved that actomyosin contractility
is controlled primarily by reversible phosphorylation of the
myosin-II regulatory light chain (MLC) through the action of
myosin kinases and phosphatases. Their results demonstrate
that actomyosin oscillations in which the combination of co-
operative binding of actin filaments in conjunction with actin
filament dissociation from the bundle, due to myosin-induced
tension, is sufficient to generate cell-autonomous oscillations
in myosin and F-actin content. With these results here we are
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associating the behavior of MLC with the actin, which is the
output of the model. This signaling network is used to build
the stochastic mathematical model as presented in the next
section.

MATHEMATICAL MODEL FOR PROTEIN INTERACTIONS

In biochemistry, Michaelis–Menten kinetics is the simplest
case of enzyme kinetics, applied to enzyme-catalysed reac-
tions of one substrate and one product Srinivasan (2022). It
takes the form of an equation describing the rate reaction rate
v (rate of formation of product P, with concentration [P]) to
[S], the concentration of the substrate S Its formula is given
by the Michaelis–Menten equation:

v =
d p
dt

=
kSP[S][P]
Km +[P]

(1)

where V = kSP[S] represents the limiting rate approached by
the system at saturating substrate concentration for a given
enzyme concentration. When the value of the Michaelis con-
stant Km is numerically equal to the substrate concentration,
the reaction rate is half of V Raaijmakers (1987).
This kind of approach can be used to model protein-protein
interactions as we are interested in this paper. To illustrate
how to build the system with differential equations to de-
scribe the interactions we brought three kinds of examples in
Figure 3. Let’s consider that we have two types of proteins
A and B, which can interact as represented in Figure 3. For
our network, we can represent the interactions as (1) A → B,
where protein A activates protein B, such a process can be
represented by a Michaelis-Menten reaction equation. The
concentration of protein B, which is represented as [B] in-
creases as the product of protein A and the transition rate of
activation of B by A that is represented by kAB in Table 1. (2)
B → A represents the Degradation of protein B to A with a
rate kBA in Table 1. (3)A −[ B represents the inhibition of B
due to A. This dynamic interaction is also represented by a
Michaelis-Menten equation such as represented in Table 1.

Taking the interactions for our network in Figure 2, we
have the equations corresponding to each interaction in Table
1 in the Appendix. With these equations representing the
interactions, we can build a system of differential equations
to study the time evolution of the network in Figure 2, as
follows.

Table 1: List of equations for each reaction represented in
Figure 3.

Reaction Equation Reaction kind

A → B kAB[A][B]
k j+[B] Activation

B → A kBA[B] Degradation
A −[ B kAB[A][B]

k j+[B] Inhibition

d[FAK p]

dt
=

kEF p([ECMINT ]− [p−MLC])[FAK]

k1 +[FAK]
+

kFF p [FAK][p−FAK]

k3 +[p−FAK]
+

kSpF p [p−SRC][FAK]

k7 +[FAK]
+

− kF pF [p−FAK]− kF pSp [p−FAK][SRC]

k4 +[SRC]
+

− kF pRhoGEF [p−FAK][RhoGEF ]

k8 +[RhoGEF ]

d[SRCp]

dt
=

kESp([ECMINT ]− [p−MLC])[SRC]

k2 +[SRC]
+

+
kF pSp [p−FAK][SRC]

k4 +[SRC]
+

kSSp [SRC][p−SRC]

k6 +[p−SRC]
−kSpS[p−SRC]+

− kSpF p [p−SRC][FAK]

k7 − [FAK]
+

kSpRhoGAP[p−SRC][RhoGAP]
k9 +[RhoGAP]

d[RhoGEF ]

dt
=

kF pRhoGEF [p−FAK][RhoGEF ]

k8 +[RhoGEF ]
+

− kRhoGEFRhoA[RhoGEF ][RhoA]
k10 +[RhoA]

d[RhoGAP]
dt

=
kSpRhoGAP[p−SRC][RhoGAP]

k9 +[RhoGAP]
+

− kRhoGAPRhoA[RhoGAP][RhoA]
k11 +[RhoA]

d[RhoA]
dt

=
kRhoGEFRhoA[RhoGEF ][RhoA]

k10 +[RhoA]
+

− kRhoGAPRhoA[RhoGAP][RhoA]
k11 +[RhoA]

d[p−MLC]

dt
=

kRHOAMLCP [RhoA]][MLC]

k12 +[MLC]
+

+
kMLCPMLCp [MLC][p−MLC]

k13 +[MLC]
− kMLCPMLC[p−MLC]

The term [ECMINT ]− [p − MLC] in the equations rep-
resents the negative feedback that the actin polymerization
will send to the extracellular matrix. In nature, the signal is
not continuous and stops once the actin polymerization starts
and it is represented by the balance between the extracellular
matrix concentration [ECM] and the actin signal [p−MLC]
Atherton et al. (2016).
We are assuming the conservation of proteins and the con-
centrations of inactive FAK, SRC, and MLC can be derived
from the total number of molecules and the number of phos-
phorylated proteins. Next, we discuss how to build the
stochastic model from the differential equations.
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Figure 2: Network considering the pathway of proteins involved in the ECM mediated mechanosensing leading to actin polymerization.
The numbers correspond to the equations in Table 1.

Figure 3: Mathematical representation of a biochemical network.
(a) Activation and degradation of proteins. (b) Inhibition of

proteins.

CHEMICAL MASTER EQUATION FOR THE DESCRIP-
TION OF PROTEIN MECHANOSIGNALING

The Chemical Master Equation is a class of discrete-state,
continuous-time Markov processes that describe the time
evolution of a system that can be modeled as a probabilis-
tic combination of states Van Kampen (1992). For the
mechanosignaling network (Figure 2) the states are repre-
sented by the concentration of proteins in inactive, or active
states usually determined by phosphorylation and/or confor-
mational changes. The concentration of proteins is modeled
as temporal variables assuming positive values represented
by [protein], that is the number of individuals in each protein
state, for example, the number of molecules in inactive
FAK ([FAK]) or phosphorylated FAK ([p−FAK]). The time
evolution of the variable’s concentrations is modeled by
rates representing their interactions, where activation rates

represent the interactions for which there is an increase in
the protein concentration, for example, the increment in the
concentration of phosphorylated SRC ([p−SRC]) due to kssp

and the inhibition rates represent the interactions for which
there is a decrease in the concentration of the protein, for
example in the dephosphorylation of phosphorylated MLC
([p − MLC]) due to kMLCPMLC (Figure 2). It is important
to note that the system of equations describes one protein
concentration in correspondence with the concentration of
the others Van Kampen (1992); De Oliveira (2014). The
chemical master equation for the system is written as

dp([protein])
dt

= r([protein]+1, t)p([protein]+1, t)+

+g([protein]−1, t)p([protein]−1, t)+
−(r(nprotein, t)+g(nprotein, t))p(nprotein, t)

(2)

Where each protein is represented by a combination of the
gain term (g([protein], t)) responsible for the increment of
the concentration of the protein ([protein] to [protein] + 1)
and the recombination term (r([protein], t)) responsible for
the decrease of the concentration of the protein ( [protein]
to [protein]− 1), the generation and recombination of each
protein are described in Table 2. p([protein], t) is the occu-
pation probability per unit of time of a determined state in
the system. In our case, it is represented by the concentra-

doi: 10.58560/rmmsb.v03.n02.023.04

https://doi.org/10.58560/rmmsb.v03.n02.023.04


7 of 14 CHEMICAL MASTER EQUATION TO FOCAL ADHESION MODEL Renata de Oliveira, L. et al.

tion of a protein. The generation and recombination terms
used to build the stochastic model using the chemical master
equation for each reaction in our network (Figure 2) are rep-
resented in Table 2.

3 RESULTS: SOLUTION OF THE PATHWAY
LEADING TO ACTIN POLYMERIZATION

Here we are interested in exploring the signaling network of
focal adhesion proteins leading to actin polymerization and
focal adhesion formation (Figures 1 and 2) to illustrate the
use of stochastic models such as the Chemical Master Equa-
tion for the understanding of protein interactions leading to
different cell fates. The network was built considering the in-
teraction between the focal adhesion proteins (see Section 2)
and the solution for the dynamic interactions of the proteins
is given by the solution of the Chemical Master Equation
(Eq. 2) with the corresponding generation and recombina-
tion terms (as shown in Section 2). The output of this model
is the dynamic interactions of proteins, which can be seen as
the distribution of molecules in each protein state per time
(Figure 4). The system of equations is solved numerically
using the Gillespie algorithm Giampieri et al. (2011); Gille-
spie (1977). The input parameters are the initial distribution
of proteins, the total time of simulation, and the values of the
transition rates (see Tables 3 and 4 for details). Experiments
alone cannot give exactly the values of protein concentra-
tion or transition rates, because the methodologies used to
describe protein dynamics such as Fluorescence recovery af-
ter photobleaching (FRAP) or single molecule tracking fol-
lows one protein at a time and only tag a sub-population of
proteins due to diffraction effects de Oliveira and Jaqaman
(2019); Jaqaman et al. (2008); Lippincott-Schwartz et al.
(2018). But we used experimental data to estimate the range
of transition rate values and initial protein concentration used
in the simulations Carisey et al. (2013); Caron-Lormier and
Berry (2005); Calderwood et al. (2013); Stutchbury et al.
(2017).

In Figure 4 we show the results for Case 1 in Tables 3 and
4. We can see that p − FAK and p − SRC are the first to
be activated, followed by the Rho family and later by MLC
and p−MLC (Figure 4a). This cascade effect behaves as ex-
pected by the construction of the model and the experimental
information we had about the system. The higher values of
the transition rates kEF p , kESp and kFF p were chosen to guar-
antee that these reactions would happen often and coordinate
all the other events. In Figure 4b we have the detailed behav-
ior for all 4 circuits in our model. The results showed that the
activity of FAK and p−FAK occurs only at the beginning of
the process (Figure 4b(i)) and p−FAK reached its peak ac-
tivity at around 30 MCS. SRC and p− SRC continue to be
activated longer in simulation (Figure 4b(ii)), and p− SRC
achieved its peak at around 1300MCS. Another interesting
behavior we can observe for p−SRC is that it has other peaks
later in time, meaning that it is activated in waves. The acti-
vation of RhoGAP and RhoGEF (peaks at around 2600 MCS

and around 120 MCS respectively) leads to the activation of
RhoA, with maximum activity at around 1500 MCS. The cir-
cuit MLC-pMLC increased its activity later on reaching its
peak at around 3500 MCS for p−MLC. The concentration
of MLC goes to zero when the p−MLC reaches its stability.
This behavior is occurring because MLC is not regulated by
any other protein and its role is to activate p− SRC. Once
p−SRC is activated the protein degrades. It is interesting to
notice that the sequence of events is: activation of p−FAK
followed by activation of RhoGEF , then p− SRC followed
by RhoGAP and RhoA then the output p−SRC to reach sta-
bility (Figures 2 and Figure 4). For Case 1 MLC reaches a
plateau.
For the purpose of validation, we also tested a negative proof
for the model, where we considered ECM-INT0=0, which is
equivalent to a null focal adhesion signal. In this scenario,
all the other parameters were maintained constant and it re-
sulted in a flat distribution and no interaction was observed
in the system (data not shown).
In Figure 5 results for perturbations are shown. We take into
account one perturbation at a time. In Figure 5a(i) we simu-
late the Case 2 in Tables 3 and 4. This case shows the effects
to take kEF p = 1 ten times greater than the reference in Case
1. It is equivalent to saying that the FAK would be more ac-
tivated than SRC from the extracellular signal. Comparing
Figure 5a(i) with Figure 4b(i), we can see that the concen-
tration of p−FAK is great for case 2 and also that the con-
centration of p− SRC is reduced. The results for the output
protein MLC and p− SRC are shown in Figure 5(b)(i). For
case 2 it also reached a plateau.
In Figure 5a(ii) we simulate the Case 3 in Tables 3 and
4. In this case, we increased the initial concentration of
FAK0 = 20. The behavior of the proteins p − FAK and
p− SRC are not distinguishable from case 1 (Figures 5a(ii)
and 4). But the behavior of MLC changes, we can see that
p−SRC starts to oscillate around a mean value and it is not
a smooth plateau anymore.
In Figure 5a(iii) we simulate the Case 4 in Tables 3 and 4.
In this case, we increased the rate of interaction of SRC,
kESp = 1. The concentration of the protein p − FAK de-
creases with respect to case 1 (Figures 5a(iii) and 4). We can
see that the amplitude of the oscillations of p−SRC decrease
in relation to those in case 3 (Figure 5b(ii)). Finally, in Figure
5a(iv) we simulate the Case 5 in Tables 3 and 4. In this case,
we increased the initial concentration of SRC0 = 20. The
concentrations of p−FAK and p−SRC are not distinguish-
able from case 1 (Figures 5a(iv) and 4). We can see that the
amplitude of the oscillations of p−SRC have the same range
as in case 3 (Figure 5b(ii)).
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Table 2: List of generation and recombination terms used to build the stochastic model using the chemical master equation.

Protein Chemical Master equation term

p−FAK g([p−FAK], t) = kEF p ([ECMINT ]−[p−MLC])[FAK]
k1+[FAK]

+
kFF p [FAK][p−FAK]

k3+[p−FAK]
+

kSpF p [p−SRC][FAK]
k7+[FAK]

p−FAK r([p−FAK], t) = kF pF [p−FAK]+
kF pSp [p−FAK][SRC]

k4+[SRC]
+

kF pRhoGEF [p−FAK][RhoGEF ]
k8+[RhoGEF ]

p−SRC g([p−SRC], t) = kESp ([ECMINT ]−[p−MLC])[SRC]
k2+[SRC]

+
kF pSp [p−FAK][SRC]

k4+[SRC]
+

kSSp [SRC][p−SRC]
k6+[p−SRC]

p−SRC r([p−SRC], t) = kSpS[p−SRC]+
kSpF p [p−SRC][FAK]

k7+[FAK]
+

kSpRhoGAP[p−SRC][RhoGAP]
K9+[RhoGAP]

RhoGEF g([RhoGEF ], t) = kF pRhoGEF [p−FAK][RhoGEF ]
k8+[RhoGEF ]

RhoGEF r([RhoGEF ], t) = kRhoGEFRhoA[RhoGEF ][RhoA]
k11+[RhoA]

RhoGAP g([RhoGAP], t) = kSpRhoGAP[p−SRC][RhoGAP]
K9+[RhoGAP]

RhoGAP r([RhoGAP], t) = kRhoGAPRhoA[RhoGAP][RhoA]
k11+[RhoA]

RhoA g([RhoA], t) = kRhoGEFRhoA[RhoGEF ][RhoA]
k10+[RhoA]

RhoA r([RhoA], t) = kRhoGAPRhoA[RhoGAP][RhoA]
k11+[RhoA]

p−MLC g([p−MLC], t) = kRHOAMLCP [RhoA][MLC]
k12+[MLC]

+
kMLCPMLCp [MLC][p−MLC]

k13+[MLC]

MLCp r([p−MLC], t) = kMLCPMLC[p−MLC]

doi: 10.58560/rmmsb.v03.n02.023.04
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Figure 4: Normalized distribution of proteins per Monte Carlo step (MCS). (a) Dynamic activation of key signaling proteins of the base
network. (b) The detailed dynamic of each circuit in the network: (i) FAK (ii) SCR (iii) Rho family and (iv) MLC was zoomed-in protein

concentration, for a max concentration of 0.05. All the plots show the mean of 10 simulations. For visualization purposes, each point
represents the mean of the concentration for 10-time steps. The parameters used for these simulations are detailed in Tables 3 and 4.
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Figure 5: Comparison of the perturbations made in the parameters of the model. (a) The concentration of the key proteins in the system
(p−FAK, p−SRC, RhoA and p−MLC) the figures show only the initial 400 MCS for the purpose to see how the early proteins are

behaving. (b) The concentration of proteins for the output MLC and p−MLC. The subdivision of the figures are (i) Case 2; (ii) Case 3;
(iii) Case 4 (iv) Case 5. The parameters used for these simulations are detailed in Tables 3 and 4.

doi: 10.58560/rmmsb.v03.n02.023.04
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4 DISCUSSION

We proposed a stochastic mathematical model using the solu-
tion of the Chemical Master equation to understand the net-
work of proteins involving extracellular matrix stimuli that
can lead to actin polymerization and focal adhesion forma-
tion. Our signaling network was built considering the inter-
action between the focal adhesion proteins FAK, Src, Rac,
Rho, Myosin light-chain (MLC) (Figures 1 and 2). Our data
showed the capacity of the model to predict expected behav-
iors by reproducing a cascade of events and dependence on
the activation of proteins of a known signaling pathway, as
follows.
Our results have shown that FAK activity is lower than Src
activity (see figures 4 and 5), which confirms what was ex-
perimentally observed by Caron-Lormier and Berry Caron-
Lormier and Berry (2005). Furthermore, we observed that
the increase of activation rate of p−FAK (Case 2, Figure
5a(i)) did not influence the dynamic of other proteins, only
the initial concentration of p−FAK. A behavior that was ob-
served experimentally by Stutchbury et. al Stutchbury et al.
(2017).
For cases 3, 4, and 5 oscillations in the dynamics of p−MLC
were observed (Figures 5b (ii), (iii) and (iv)). These oscilla-
tions are more evident in the cases we are varying the initial
concentration of FAK and SRC (Figures 5b (ii), and (iv), re-
spectively). Which can be associated with a stiff substrate
and higher protein recruitment to the focal adhesion. Stutch-
bury et. al Stutchbury et al. (2017) showed that a modular
composition of FAs with the mobile behavior of protein sub-
sets responded differently when encountering environments
of different rigidities.
In summary, we proposed a stochastic model considering the
dynamic of focal adhesion proteins leading to actin polymer-
ization. Our model was built in a combination of experimen-
tal and theoretical observations and was able to demonstrate
a variety of behaviors for the different proteins and circuits
within the network. Furthermore, we showed the effect of
variation in the parameters that can lead to different cell fates.
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APPENDIX

A LIST OF EQUATIONS FOR EACH INTERAC-
TION

The list of equations for each reaction represented in Figure
2. The indexes correspond to those in Figure 2, the equation
and the kind of reaction are also represented in the table.

B PARAMETERS FOR THE SIMULATIONS

The list of equations for each reaction represented in Figure
2. The indexes correspond to those in Figure 2, the equation
and the kind of reaction are also represented in the table.
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Table 3: List of equations for each reaction represented in Figure 2. The indexes correspond to those in Figure 2, the equation
and the kind of reaction are also represented in the table.

Index Reaction Equation Reaction kind

1 ECMINT → p−FAK kEF p ([ECMINT ]−[p−MLC])[FAK]
k1+[FAK]

Michaelis-Menten

2 ECMINT → p−SRC kESp ([ECMINT ]−[p−MLC])[SRC]
k2+[SRC]

Michaelis-Menten

3 FAK → p−FAK kFF p [FAK][p−FAK]
k3+[p−FAK]

Michaelis-Menten

4 p−FAK → p−SRC kF pSp [p−FAK][SRC]
k4+[SRC]

Michaelis-Menten

5 SRC → p−SRC kSSp [SRC][p−SRC]
k6+[p−SRC]

Michaelis-Menten
6 p−FAK → FAK kF pF [p−FAK] Degradation
7 p−SRC → p−FAK kSpF p [p−SRC][FAK]

k7+[FAK]
Michaelis-Menten

8 p−SRC → SRC kSpS[p−SRC] Degradation
9 p−FAK → RHOGEF kF pRhoGEF [p−FAK][RhoGEF ]

k8+[RhoGEF ]
Michaelis-Menten

10 p−SRC → RHOGAP kSpRhoGAP[p−SRC][RhoGAP]
k9+[RhoGAP] Michaelis-Menten

11 RHOGEF → RHOA kRhoGEFRhoA[RhoGEF ][RhoA]
k10+[RhoA] Michaelis-Menten

12 RHOGAP −[ RHOA kRhoGAPRhoA[RhoGAP][RhoA]
k11+[RhoA] Inhibition

13 RHOA −[ p−MLC kRHOAMLCP [RhoA][MLC]
k12+[MLC]

Michaelis-Menten

14 MLC → p−MLC kMLCPMLCp [MLC][p−MLC]
k13+[MLC]

Michaelis-Menten
15 p−MLC → MLC kMLCPMLC[p−MLC] Degradation

Table 4: List of equations for each reaction represented in Figure 2. The indexes correspond to those in Figure 2, the equation
and the kind of reaction are also represented in the table.

Rate(/s) Case 1 Case 2 Case 3 Case 4 Case 5

1 ECMINT → p−FAK kEF p ([ECMINT ]−[p−MLC])[FAK]
k1+[FAK]

Michaelis-Menten

2 ECMINT → p−SRC kESp ([ECMINT ]−[p−MLC])[SRC]
k2+[SRC]

Michaelis-Menten

3 FAK → p−FAK kFF p [FAK][p−FAK]
k3+[p−FAK]

Michaelis-Menten

4 p−FAK → p−SRC kF pSp [p−FAK][SRC]
k4+[SRC]

Michaelis-Menten

5 SRC → p−SRC kSSp [SRC][p−SRC]
k6+[p−SRC]

Michaelis-Menten
6 p−FAK → FAK kF pF [p−FAK] Degradation
7 p−SRC → p−FAK kSpF p [p−SRC][FAK]

k7+[FAK]
Michaelis-Menten

8 p−SRC → SRC kSpS[p−SRC] Degradation
9 p−FAK → RHOGEF kF pRhoGEF [p−FAK][RhoGEF ]

k8+[RhoGEF ]
Michaelis-Menten

10 p−SRC → RHOGAP kSpRhoGAP[p−SRC][RhoGAP]
k9+[RhoGAP] Michaelis-Menten

11 RHOGEF → RHOA kRhoGEFRhoA[RhoGEF ][RhoA]
k10+[RhoA] Michaelis-Menten

12 RHOGAP −[ RHOA kRhoGAPRhoA[RhoGAP][RhoA]
k11+[RhoA] Inhibition

13 RHOA −[ p−MLC kRHOAMLCP [RhoA][MLC]
k12+[MLC]

Michaelis-Menten

14 MLC → p−MLC kMLCPMLCp [MLC][p−MLC]
k13+[MLC]

Michaelis-Menten
15 p−MLC → MLC kMLCPMLC[p−MLC] Degradation
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