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RESUMEN

Este articulo presenta un andlisis dindmico y estructural del paisaje de atractores en dos redes reguladoras de genes vinculadas
al desarrollo embrionario de erizos de mar: el endodermo y el esqueleto larval. Se utilizan modelos booleanos para simular la
dindmica y se generan los diagramas de transicion correspondientes. A partir de muestras aleatorias de condiciones iniciales,
se identifican atractores de periodo dos en todos los casos. Se examinan la profundidad de las trayectorias, el tamaifio de las
cuencas de atraccién y la estructura de comunidades en las componentes atractoras. Se observa que los atractores dominantes
concentran la mayor parte de las trayectorias y presentan comunidades mds extensas, mientras que los menos frecuentes
estan asociados a trayectorias mds simples. La elevada proporcién de interacciones activadoras y mddulos de interaccion
en ambas redes sugiere una organizacion topoldgica que favorece la convergencia hacia estados ciclicos estables. Estos
resultados apoyan la hipétesis de que la estructura de las redes génicas estd moldeada por presiones evolutivas que promueven
comportamientos dindmicos robustos y funcionales durante el desarrollo embrionario.

Palabras Claves:

Redes reguladoras de genes, dindmica booleana, atractores periddicos, comunidades dindmicas

ABSTRACT

This article presents a dynamic and structural analysis of the attractor landscape in two gene regulatory networks involved in
sea urchin embryonic development: the endoderm and the larval skeleton. Boolean models are used to simulate the system’s
dynamics and to generate the corresponding transition diagrams. Based on random samples of initial conditions, all iden-
tified attractors exhibit a period-two cyclic behavior. The study examines trajectory depth, basin sizes, and the community
structure within attractor components. Dominant attractors concentrate most trajectories and form larger communities, while
less frequent ones are associated with simpler, more direct dynamics. The high proportion of activating interactions and the
presence of multiple interaction modules suggest a topological organization that promotes convergence to stable cyclic states.
These findings support the hypothesis that gene network structures are shaped by evolutionary pressures to ensure robust and
functional dynamics during embryonic development.

Keywords:

Gene regulatory networks, Boolean dynamics, periodic attractors, dynamic communities
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PERIODICIDAD EN LOS ATRACTORES DE DOS GRN

Espaiia Tinajero, A. et al.

PRELIMINARES
TEORIA DE GRAFOS

En el contexto de este articulo, nos referimos a las redes
como un grafo dirigido (o digrafo) denotado por G = (V,A),
donde V representa el conjunto de vértices y A el conjunto
de aristas dirigidas. Una arista dirigida se define como un par
ordenado (u,v), con u,v € V. Todas las redes consideradas
cumplen la condicién de que tanto V como A son conjuntos
finitos.

Existen dos conjuntos importantes asociados a un vértice
v: el conjunto de entrada de v, denotado por I(v), y el con-
junto de salida de v, denotado por O(v). Estos conjuntos se
definen de la siguiente manera: I(v) ;== {u € V : (u,v) € A}
yoOW):={ueV:(vu) €A}

El grado de entrada y el grado de salida de un vértice
v € V en un digrafo se definen como el nimero de aristas
que llegan a v y el ndimero de aristas que salen de v,
respectivamente. Estos se denotan por |[[(v)| y |O(V)].

Un camino dirigido en G desde u € V hastav € V es una
secuencia de vértices tal que cada par consecutivo de vértices
u=vg— vy —--- — vy =v forma una arista dirigida en A.
En este caso, ¢ representa la longitud del camino dirigido.
Por otro lado, un camino no dirigido entre los vértices u € V
y v € V es una secuencia de vértices, como se describié
anteriormente, con la diferencia de que cada par consecutivo
de vértices forma una arista dirigida o su inverso en A.

En el digrafo G = (V,A), una componente débilmente
conexa es un conjunto maximal C C V tal que existe un
camino no dirigido entre cada par u,v € C, considerando las
direcciones de las aristas.

Consideremos un polidrbol 7' = (V,A). Las raices del po-
lidrbol constituyen el conjunto de vértices R = {ry,...,ri} C
V, donde el conjunto de entrada es vacio, es decir, I(v) = 0
para todo v € R. Por otro lado, las hojas de T son el conjunto
de vértices L C V cuyo conjunto de salida es vacio, es de-
cir, O(v) = 0 para todo v € L. Las aristas de este drbol estdn
dirigidas desde las raices hacia las hojas.

DINAMICA DE LAS REDES

Una red reguladora de genes (GRN, por sus siglas en
inglés) puede entenderse como un sistema dindmico forma-
do por multiples unidades interconectadas, cuya evolucion
depende de la estructura de las interacciones entre ellas,
tal como se expone en de Jong and Lima (2005). En este
marco, dichas unidades corresponden a productos génicos
y se describen mediante valores numéricos que varian en el
tiempo, los cuales representan sus concentraciones relativas,
siguiendo lo sefialado en Luna et al. (2013).

El tiempo se modela como una variable discreta, y el siste-

ma se describe mediante una red de mapas acoplados por tra-
mos afines, siguiendo el enfoque de Luna and Ugalde (2008).
La evolucién global del sistema se observa en los instantes
to <t <---<t, <---,y suestado en un momento arbitra-
rio t puede representarse mediante un vector N-dimensional,
donde |V| = N y cada componente x/ € R indica el nivel de
actividad de la i-ésima unidad en ese instante. La dindmica
del sistema define su configuracién futura a partir del esta-
do inmediatamente anterior, mediante la siguiente regla de
actualizacién:

x’j+l =o;X;+D; (v el (vy)),

donde el parametro «; € [0, 1] representa la tasa de degra-
dacién asociada al vértice v;, y D; es una funcién que depen-
de de los niveles de actividad de los vértices que conforman
el conjunto de entradas de v;. Adoptamos ¢; = 1 con el fin
de simplificar la descripcion de la dindmica y enfocar el ané-
lisis en el papel que desempenan la topologia de la red y los
mddulos de interaccién, asumiendo una evolucién sin degra-
dacién explicita. La funcién D; es una funcién dependiente
de los niveles de actividad de los vértices que integran el con-
junto de entradas de v;. A las componentes funcionales que
determinan estas interacciones las denominamos mdédulos de
interaccidn. Hay tres casos principales:

1. Entradas individuales: Una unica arista u — v es sufi-
ciente para activar v:
+1 _
)gv - ‘xit

donde x, € {0,1} es la variable que indica si u estd ac-
tivo.

2. Entradas combinatorias: Varias aristas deben concurrir
simultdneamente para generar la sefial. Un ejemplo de
su representacion se observa mediante el producto de

sus variables:
41 _ '
X = qu.

uel,

3. Autoregulaciones: Un vértice v puede regularse a si mis-
mo mediante un lazo v — v. Se incluye su propia varia-
ble x, en la férmula, por ejemplo:

4= [T

uel,\{v}

Asi, la activacion de v depende también de su estado
previo.

La evolucién temporal de una red reguladora puede repre-
sentarse mediante un digrafo que funciona como su diagrama
de transicién, de acuerdo con el enfoque descrito en Espaiia
et al. (2025). En este digrafo, cada vértice corresponde a una
configuracién posible del sistema en un instante ¢ € N, es
decir, a un vector (x},x,...,x%) € {0,1}". Los caminos de
este grafo describen las trayectorias dindmicas que emergen
a partir de una condicién inicial (x(l),xg, ... ,xg,) c{0,1},y
permiten visualizar las secuencias de estados que el sistema
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puede alcanzar bajo su dindmica. Para los fines de este
estudio, adoptamos la convencién de que el valor O indica
que un gen se encuentra desactivado, mientras que el valor 1
representa su activacion.

En la Figura 1 se presenta un ejemplo de la dindmica
que induce una red reguladora de genes. En (a), se muestra
una red reguladora de genes ficticia con estructura de
poliarbol, compuesta por cinco vértices (genes) y seis aristas
que representan interacciones de activacién e inhibicion,
indicadas mediante flechas convencionales y flechas planas,
respectivamente. En (b), se muestra la funcién booleana
derivada de su topologia, en la cual se asume que los
genes rafz permanecen constantemente activos, mientras
que el conjunto de hojas estd conformado por un dnico
representante. En (c), se ilustran dos trayectorias dindmicas
generadas a partir de diferentes condiciones iniciales 00000
y 10011. En ambos casos, la evolucién del sistema conduce
eventualmente a un estado estable, el punto fijo 11011. Los
estados estables (que incluyen tanto puntos fijos como pun-
tos periddicos), denominados patrones de actividad génica
o GAPs (por sus siglas en inglés, Gene Activity Patterns,
segun lo sefialado en Espinosa-Soto (2018)), corresponden
al fenotipo funcional de la red, reflejando su especializacion
en una tarea regulatoria particular, segin Davidson et al.
(2002). Finalmente en (d), se muestra el diagrama de
transicién asociado a la red, el cual representa todas las
trayectorias posibles derivadas de las 2°, configuraciones
iniciales binarias del sistema. Cada vértice en el grafo
esta etiquetado con el valor decimal correspondiente a su
configuracion binaria (por ejemplo, la etiqueta O corresponde
a la condicién inicial 00000 y la etiqueta 31 corresponde a
11111), y las aristas indican las transiciones dictadas por
la dindmica booleana. Como se aprecia, este digrafo es
igualmente un polidrbol en el que, salvo cuatro vértices,
todos son raices, y no existen hojas, pues cada uno de los
vértices restantes tiene al menos una arista de salida.

En las redes analizadas en este trabajo, el espacio de es-
tados crece exponencialmente con el nimero de genes (del
orden de 234, es decir, mds de 17 mil millones de combinacio-
nes posibles), por lo que una exploracién exhaustiva de todas
las trayectorias actualmente es para nosotros computacional-
mente inviable. En consecuencia, los atractores se determina-
ron de manera analitica a partir de las funciones booleanas de
cada red, identificando todos los ciclos accesibles. El modelo
booleano caracteriza de forma completa el paisaje de atracto-
res definido por la estructura de la red; no obstante, estudios
futuros podrian considerar variantes estocdsticas o continuas
para explorar sensibilidad paramétrica y transitorios raros.

METODOLOGIA

En este articulo se analizan dos redes reguladoras de ge-
nes extraidas de sistemas modelo ampliamente utilizados
en biologia del desarrollo, por ejemplo, véanse los trabajos
de: Davidson (2010); Arda et al. (2013); Combs and Yutzey

Gene 1 Gene
Ill" Y(l) =cte =1
T Y(2) = min{l1, x(1) +x(3)}
Gene 2 Gene 4 Y(3) = min{1, 2 = (x(1) + x(2))}
Y(4) =cte =1
F Y(5) = min{1, x(2) + x(4)}
Gene 5

(a) Red reguladora de genes (b) Funcién booleana asociada

_——— O

—_—— e — O
—_—— e — O O
cCooOo—m—Oo
—_—— - O
—_—— - O O
——
cCoOo—=—o
—_—
——

(c) Orbitas de dos condiciones
iniciales

0116 17 32 8 9 24 25

2 6 10 12 14 18 22 26 28

(d) Diagrama de transicién de la red

Figura 1: Ejemplo de la dindmica de una red reguladora de genes.
Se muestra una red reguladora de genes, su funcién booleana
asociada, dos trayectorias dindmicas a partir de las condiciones
iniciales: 00000 y 10011. Finalmente, se muestra el diagrama de
transicion de la red.

(2009); Kueh and Rothenberg (2012); Stathopoulos and Le-
vine (2005). Estas redes corresponden a los siguientes orga-
nismos:

1. Endodermo del erizo de mar, extraida de Garfield et al.
(2013).

2. Esqueleto del erizo puirpura del Pacifico, extraida de Li
and Davidson (2009).

Los erizos de mar son organismos modelo amplia-
mente utilizados en biologia del desarrollo debido a su
embriogénesis externa, simetria radial y redes génicas
bien caracterizadas. El endodermo, una de las tres capas
germinativas del embrién que da origen al intestino pri-
mitivo y a otros 6rganos internos, ha sido particularmente
estudiado en especies como Strongylocentrotus purpuratus.
En estos organismos, el endodermo se origina a partir de
dos poblaciones celulares vegetales denominadas Vegl y
Veg2, cuya especificacion estd regulada por una red génica
altamente conservada que responde a sefiales de las vias
Wnhnt/B-catenina y Delta/Notch. Este sistema constituye
un modelo ideal para investigar los mecanismos de espe-
cificacion del destino celular y la integracién de sefales
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intercelulares durante la formacion de estructuras internas,
proporcionando asi informacion clave sobre la evolucién de
los programas de desarrollo en deuterdstomos, segin Peter
and Davidson (2010).

Esqueleto del erizo purpura del Pacifico. Strongylocen-
trotus purpuratus, el erizo purpura del Pacifico, constituye
un modelo fundamental para el estudio de la formacién
del esqueleto larval. Esta estructura estd compuesta por
espiculas calcireas que se originan a partir de células
mesenquimadticas primarias (PMC), las cuales migran, se
fusionan en un sincitio y secretan una matriz organica que
sirve como andamiaje para la cristalizacién de calcita. La
especificacion de las PMC estd regulada por una red génica
que incluye factores exclusivos del linaje de equinoideos,
como pmarl y alxl, y depende de sefiales inductivas
provenientes del ectodermo, entre las que destaca la via de
sefializacién mediada por VEGF. Este sistema constituye un
ejemplo paradigmdtico de cémo los programas genéticos
orquestan procesos morfogenéticos y proporciona un marco
para investigar la evolucién de estructuras biomineralizadas
en metazoos, segin Rafiq et al. (2012).

En ambas redes se muestra un fragmento de su red
reguladora de genes en el desarrollo embrionario de los
organismos correspondientes.

Estas redes estdn compuestas como se indica en la Tabla 1.
Por el nimero de vértices que conforman estas redes, la
cantidad total de condiciones iniciales que conforman el
diagrama de transicion es, por lo menos, del orden de 1010,
Para fines analiticos, definimos una muestra aleatoria de
condiciones iniciales de un millén para la primera red y
diez millones para la segunda. Dichas muestras son esta-
disticamente representativas, ya que garantizan un intervalo
de confianza del 95% con un margen de error maximo de
40,098 % para la primera red y 0,031 % para la segunda,
asumiendo la peor variabilidad posible en proporciones
(p = 0,5). Estas condiciones aseguran una alta fiabilidad en
las estimaciones de participacién y profundidad presentadas
en los andlisis por presentar.

Como se puede observar, ambas redes tienen una
dominancia fuerte para el nimero de activaciones, que
corresponden a mas de un 80%, una tasa de autorregula-
ciones baja (menor al 10%) y una cantidad de médulos de
interaccién mayor al 50 %. Esto da indicios de la estabilidad
de los atractores considerando la dindmica booleana que
aqui planteamos.

En este articulo se presenta un andlisis estadistico del pai-
saje de atractores de los diagramas de transicion de dos redes
reguladoras de genes, basado en el tamafio de las cuencas
y la distribucién de las longitudes de los caminos. Para el
andlisis de las redes reguladoras y sus respectivos diagramas
de transicién, se utilizaron los programas Mathematica 14 'y
Python 3.0, junto con las bibliotecas pandas, collections,

networkx ymatplotlib.pyplot. Ademads, la visualizacion
de los datos se realizé con CorelDRAW Graphics Suite 2023.

RESULTADOS

La estructura de los diagramas de transicién que resultan
de aplicar la dindmica a las redes reguladoras de genes del
Endodermo del erizo de mar y de Esqueleto del erizo piir-
pura del Pacifico arroja que su comportamiento asintético
siempre termina en varios ciclos atractores que siempre son
de tamafio 2, estos suelen representar patrones de expresion
génica oscilatorios o alternantes. Esto puede indicar que
algunos genes pueden estar encendiéndose y apagandose
representando mecanismos de retroalimentacién positiva
0 negativa, como explica Tian et al. (2009), o asociarse a
dos estados funcionales recurrentes, como por ejemplo una
respuesta a un estimulo encendido o apagado.

Endodermo del erizo de mar

El diagrama de transicion de la red reguladora de genes del
Endodermo del erizo de mar tiene dos componentes débil-
mente conexas, cuyos ciclos atractores, son de periodicidad
dos, y se muestran a continuacion:

1. Primer ciclo atractor:

1,1,...,1,0,0,1,1,....1.
—— ——
17 15

1,...,1,0,0,1,1,0,0,1,...,1,0,1,...,1.
—— —— =
17 5 5

2. Segundo ciclo atractor:

1,...,1,0,0,1,1,1,0,1,...,1.
—— ——
17 11
1,...,1,0,0,1,1,0,1,...,1.
—— ——

17 12

A pesar de que la dimensién de esta red es de 34, la
dindmica resultd ser sencilla. A continuacién en la Figura 2
se muestra un resumen de la dindmica de su diagrama de
transiciéon. En el cual, el primer ciclo atractor (que por
simplicidad escribiremos como Atractor 1) atrae al 50 % de
las condiciones iniciales en la muestra aleatoria que utiliza-
mos. Mientras que el segundo ciclo atractor (o simplemente
Atractor 2), atrae a la otra mitad de las condiciones iniciales.

Ademas, la profundidad ¢ de esta red es bastante pequeia.
El camino més largo detectado en el diagrama de transicién
tiene longitud de 3. Esto puede deberse a la gran cantidad
de activaciones que tiene la red subyacente (recordemos que
es de 85.5%). Un muy pequefio porcentaje de condiciones
iniciales, son las que llegan al atractor en un solo paso, lo
que indica que la dindmica transitoria no es trivial, aunque
solo haya que pasar por uno o dos estados intermedios antes
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Red reguladora de genes Vértices | Aristas | Activaciones | Inhibiciones Hojas Raices Autorregulaciones | Médulos de interaccion
Cant. | % | Cant. | % | Cant. | % | Cant. % | Cant. %o Cant. %o
Endodermo del erizo de mar 34 83 71 85.5 12 14.5 15 44.1 5 14.7 5 6.0 44 53.0
Esqueleto del erizo piirpura del Pacifico 35 106 87 82.1 19 17.9 11 31.4 5 143 8 7.5 88 83.0

Tabla 1: Resumen comparativo de propiedades estructurales de dos redes reguladoras de genes. Se incluyen niimero de
vértices, aristas, activaciones, inhibiciones, hojas, raices, autorregulaciones y modulos de interaccidn, expresados en

cantidad absoluta y porcentaje.

20 Distribuciéon de pasos para llegar al atractor

—— Atractor 1

—— Atractor 2
60

50

401

%

30

20

10

Pasos

Participacién atractor 1
50%

Participacién atractor 2
50%

Figura 2: Estadistica de los atractores del Endodermo del erizo de
mar.

de caer en un comportamiento estable, y en este caso, ciclico.

A partir de la muestra, se construyeron las funciones
de probabilidad de que una condicién inicial le tome n
nimero de pasos para llegar al ciclo atractor final que le
corresponde, en donde se obtuvo que las funciones son
unimodales, con médximo en el nimero de pasos igual a
dos y que coinciden con un error cuadratico medio de 0.82 %.

Asimismo, al examinar las componentes de los ciclos
atractores, observamos que los bloques de 1’s predominan
claramente al principio (con 17 componentes) y al final (con
mds de 10 componentes, salvo en uno de los casos). Aun-
que este patrén puede obedecer a la elevada cantidad de ac-
tivaciones de la red, también muestra que la diversidad del
diagrama de transicidon se manifiesta principalmente en los
tramos centrales de cada condicién inicial.

Esqueleto del erizo piirpura del Pacifico

El diagrama de transicién de la red reguladora de genes
del Esqueleto del erizo pirpura del Pacifico tiene siete com-
ponentes débilmente conexas, cuyos ciclos atractores, son de
periodicidad dos, y se muestran a continuacién:

1. Primer ciclo atractor:

1,...,1,0,0,1,0,1,0,1,0,1,...,1,0, 1,...,1.
—— —— ——
11 4 11

1,...,1,0,1,1,0,1,0,1,...,1,0,1,...,1.
—— —— ——
11 6 11

. Segundo ciclo atractor:

1,...,1,0,1,1,0,1,0,1,0,1,...,1,0,1,....1.
~— ~— ~—
11 4 11

1,...,1,0,0,1,0,1,0,1,...,1,0,1,...,1.
N—— N—— N——
11 6 11

. Tercer ciclo atractor:

1,...,1,0,1,1,0,0,0,1,0,1,...,1,0,1,....1.
—— N—— ——
11 4 11

1,...,1,0,0,1,0,0,0,1,...,1,0,1,...,1.
—— —— ——
11 6 11

. Cuarto ciclo atractor:

1,....1,0,1,1,0,0,0,1,...,1,0,0,1,...,1,0.
~—— N—— N——

11 6 9
1,...,1,0,0,1,0,0,0,1,0,1,...,1,0,1,....1,0.
—— —— ——

11 4 10

. Quinto ciclo atractor:

1,...,1,0,0,1,0,0,0,1,0,1,....1,0,1,....1.
N—— N——

——
11 4 11
1,...,1,0,1,1,0,0,0,1,...,1,0,1,....,1.
—— —— ——

11 6 11

. Sexto ciclo atractor:

1,...,1,0,1,0,...,0,1,0,...,0,1,0,0,1,0,0,1,1,1,0,0, 1, 0.
~—— N~ =
11 4 4
1,...,1,0,...,0,1,1,0,0,0,1,0,0,1,0,0,1,1,1,0,0, 1, 0.
——

——
11 6

. Séptimo ciclo atractor:

1,...,1,0,1,0,...,0,1,1,0,0,0,1,0,0,1,0,0,1,1,1,0,0, 1, 0.
~—— ~——
11 4

1,...,1,0,...,0,1,0,...,0,1,0,0,1,0,0,1,1, 1, 0,0, 1,0.
N~ N~ N~
11 6 4
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Figura 3: Estadistica de los atractores en la red del desarrollo del esqueleto larval en el erizo piirpura del Pacifico.

Se tiene que cada atractor estd en una componente
débilmente conexa disjunta de las demads, lo que particiona
al diagrama de transicion.

La red reguladora de Esqueleto del erizo piirpura del
Pacifico, compuesta por 35 vértices, exhibe una dindmica
notablemente sencilla, similar a la observada en la red
anterior, en donde todos los atractores identificados corres-
ponden a ciclos de periodo dos. En la Figura 3 se presenta
un resumen estadistico del comportamiento asintético de
esta red, donde destacan los atractores 1 y 2, que concentran
en conjunto aproximadamente el 91% de las condiciones
iniciales analizadas. Especificamente, el atractor 1 alcanza
su participacién maxima en el paso cuatro con un 43.3 %,
mientras que el atractor 2 presenta su pico en el paso tres
con un 62.5 %.

Los atractores 2, 3, 4, 5, 6 y 7 presentan tasas de atraccién
significativamente menores y distribuciones més suaves. No
obstante, todos ellos comparten la caracteristica de alcanzar
su méaxima probabilidad en la longitud de trayectoria mas
prolongada dentro de su componente, lo que sugiere una
convergencia mds gradual hacia el estado ciclico. Por otro
lado, el atractor 4, tiene una participacion nula estadistica-
mente.

La profundidad del diagrama de transicién varia entre
cinco y seis pasos segun la componente débilmente conexa
considerada. La componente de mayor profundidad coincide
con la de mayor participacién relativa. Aunque existen
trayectorias que conducen al atractor en un Unico paso, estas
representan una fraccién muy reducida de la muestra. La
mayoria de las trayectorias transitorias requiere entre dos y
cinco pasos, reflejando asi una dindmica transitoria breve,
pero no inmediata ni trivial.

A partir de una muestra aleatoria de diez millones de
condiciones iniciales, se construyeron las funciones de pro-
babilidad del nimero de pasos necesarios para alcanzar cada

atractor. Todas ellas (con excepcién de la correspondiente
al atractor 1, que presenta una distribucién mds dispersa)
resultaron unimodales, con una fuerte tendencia hacia
trayectorias cortas en comparacién con la dimensién total
del sistema. Este comportamiento refuerza la interpretacion
de que la red posee una dindmica altamente organizada,
orientada hacia ciclos periédicos accesibles en pocos pasos.

Al igual que en el caso anterior, al examinar las compo-
nentes de los ciclos atractores vemos un claro predominio de
bloques de 1’s tanto al inicio (11 componentes) como al final
(mds de nueve, salvo en dos atractores que exhiben mayor
diversidad en ese extremo aunque tienen un comportamiento
periédico). También este patrén puede explicarse por la ele-
vada activacién de la red, asi mismo evidencia que la mayor
variabilidad del diagrama de transicién se concentra en los
segmentos centrales de cada condicién inicial.

ANALISIS DE COMUNIDADES EN LAS COMPONENTES
ATRACTORAS

Como complemento al estudio dindmico de los atractores,
se realiz6 un andlisis estructural de las comunidades forma-
das por las trayectorias que convergen hacia cada uno de
ellos. Este andlisis permite caracterizar la diversidad interna
y la organizacién topoldgica de cada componente atractora,
revelando diferencias en la complejidad estructural de sus
trayectorias de atraccién.

Endodermo del erizo de mar. En el caso del modelo
correspondiente a la red del endodermo, se analizaron dos
atractores principales. Para ello, se aplicaron técnicas de
deteccién de comunidades sobre los subgrafos inducidos
por las condiciones iniciales que convergen hacia dichos
atractores. En la Figura 4 se muestra la distribucién de la
longitud de las comunidades detectadas. El eje vertical estd
en escala logaritmica para resaltar la variabilidad. Se observa
que ambos atractores presentan estructuras comunitarias
amplias, aunque el Atractor 2 tiende a formar comunidades
mas extensas.
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Distribucién de la longitud de las comunidades para cada diagrama de transicion Sea Urchin
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10t
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Figura 4: Distribucién de la longitud de las comunidades para
cada atractor del endodermo del erizo de mar.

Esqueleto del erizo purpura del Pacifico. En el caso
del modelo correspondiente a la red del esqueleto larval, se
identificaron siete atractores. Sobre estos se aplicaron algo-
ritmos de deteccidn de clusteres para estudiar la estructura de
comunidades inducidas por las trayectorias que convergen
hacia cada uno. La Figura 5 muestra la distribucién de
la longitud de dichas comunidades. Al igual que en el ca-
so anterior, se utiliza una escala logaritmica en el eje vertical.

Distribucién de la longitud de las para cada diagrama de transicion

J—

2

Valor (escala log)

Atractor 1

Atractor 2 Atractor 3 Atractor 5 Atractor 6 Atractor 7

Figura 5: Distribucién de la longitud de las comunidades
detectadas en cada componente atractora del esqueleto larval en el
erizo purpura del Pacifico.

transiciones vdlidas, y los colores diferencian las comu-
nidades detectadas. La organizacién jerdrquica observada
en algunos atractores da cuenta de diferencias topoldgicas
significativas, incluso entre atractores con tamafios similares.

@ = . s;(‘iw) ®
5 @) ! \
C @
» -
C {’ & @
( I\
" @ S
2]
(&) (b\
(a) Atractor 2 (b) Atractor 3

(c¢) Atractor 5 (d) Atractor 6

(e) Atractor 7

Figura 6: Estructura de comunidades en los grafos inducidos por
las componentes atractoras de la red del esqueleto larval en el
erizo purpura del Pacifico. El atractor 4 no aparece debido a su

ausencia en la muestra; el atractor 1 no fue incluido por su tamafio.

El Atractor 1 presenta la mayor dispersién, con comuni-
dades mds extensas, lo que coincide con su alta frecuencia
de aparicién en las simulaciones. Atractores como el 2 y
el 3 también muestran estructuras comunitarias complejas,
aunque de menor escala. Por el contrario, los atractores 6
y 7 exhiben comunidades mds compactas y concentradas,
indicando trayectorias de atraccién mas simples.

Las estructuras comunitarias de los atractores mas re-
presentativos se ilustran en la Figura 6. Cada subfigura
(a), (b), (c), (d), y (e) es una componente conexa del
diagrama de transicion, y estd asociada a un Unico atractor
etiquetado en la correspondiente subfigura, de manera en
que cada nodo representa un estado, las aristas indican

En conjunto, los resultados para ambos modelos muestran
que la complejidad estructural de los atractores esta correla-
cionada con su participacién en la dindmica global del sis-
tema. Atractores dominantes tienden a generar trayectorias
mads ramificadas y comunidades de mayor tamafio, mientras
que los menos frecuentes se asocian a estructuras mas sim-
ples.

DISCUSION

La complejidad estructural de las redes presentadas en
este articulo no es trivial, y aun asi todos los atractores
identificados corresponden a ciclos de periodo dos. Esta
simplicidad emergente no es evidente a priori y resalta la
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capacidad de la topologia de la red para organizar dindmicas
complejas en comportamientos altamente predecibles.
Ademds, esto sugiere una tendencia del sistema hacia
dindmicas recurrentes. Desde una perspectiva bioldgica,
dicha periodicidad puede estar asociada con procesos de re-
gulacién génica alternante durante el desarrollo embrionario,
lo cual puede otorgar a estas redes una funcionalidad robusta.

En ambos casos, se observa una marcada predominancia
de interacciones de tipo activador, con mas del 80% de
participacién. Asimismo, la tasa de autorregulaciones es
baja (menor al 10%) y una proporcién considerable de
vértices participa en modulos de interaccién (méas del 50 %).
Esta configuracion estructural sugiere que las redes estdn
disefadas para favorecer la sincronizacién entre nodos
mediante mecanismos de activacion.

La combinacién de estos factores puede explicar la
convergencia rdpida hacia ciclos atractores, incluso en pre-
sencia de una dindmica no lineal y de alta dimensionalidad.
En particular, la alta densidad de activaciones facilita la
propagacién eficiente de sefiales, promoviendo patrones
estables de actividad génica con una minima profundidad
transitoria.

Estos resultados apoyan el hecho de que la estructura
topoldgica de una red reguladora de genes no es arbitraria,
sino que estd sujeta a presiones evolutivas que favorecen
configuraciones capaces de producir comportamientos
dindmicos estables y robustos. En el contexto del desarrollo
embrionario, donde el tiempo y la precision son criticos, esta
clase de dindmica periddica puede representar una ventaja
funcional significativa.

La eleccién de un modelo booleano para este estudio se
fundamenta en que este tipo de enfoque permite capturar
las propiedades globales del paisaje dindmico sin requerir
pardmetros cinéticos dificiles de obtener para las GRNs
analizadas. Tal como se discute en la revision de Barbuti
et al. (2020), los modelos continuos basados en ecuaciones
diferenciales y los modelos estocdsticos (como el algoritmo
de Gillespie) ofrecen una descripciéon mds detallada a nivel
cuantitativo, pero dependen de tasas de reaccidn y constantes
bioquimicas que no estdn disponibles para estas redes com-
pletas. Por ello, el modelo booleano resulta apropiado para
explorar la estructura de atractores y su relacion con la topo-
logia de interacciones. No obstante, una comparacién futura
con modelos continuos o estocdsticos seria valiosa para
evaluar la robustez del comportamiento periédico observado.
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ABSTRACT

A two compartmental almost periodic model is proposed to describe lead metabolism. Unlike other models proposed to
analyze metal metabolism, all the rates involved in the model are assumed to be almost periodic functions, since it is very
restrictive to assume that the input and output rates involved in lead metabolism are constant. From the analysis of the model,
we prove that the model admits a unique almost periodic solution which is globally stable when some conditions over the
parameters of the model are satisfied. Numerical simulations of the solutions of the model show that the use of constant or
periodic rates in the modeling process, when almost periodic rates should actually be considered, can generate misleading
predictions about the values of the variables. In such scenarios, misleading forecasts could be obtained that might lead
decision-makers to design erroneous strategies, which can have negative impacts from a health perspective.

Keywords:

Lead metabolism, Metal metabolism, Almost periodic function, Cooperative systems, Global attractor

RESUMEN

Se propone un modelo bicompartimental casi periédico para describir el metabolismo del plomo. A diferencia de otros
modelos propuestos para analizar el metabolismo de metales, se supone que todas las tasas involucradas en el modelo son
funciones casi periddicas, ya que es muy restrictivo asumir que las tasas de entrada y salida involucradas en el metabolismo
del plomo son constantes. A partir del andlisis del modelo, probamos que este admite una solucién casi periédica tinica que es
globalmente estable cuando se satisfacen ciertas condiciones sobre los pardmetros del modelo. Las simulaciones numéricas
de las soluciones del modelo muestran que el uso de tasas constantes o periddicas en el proceso de modelado, cuando en
realidad deberfan considerarse tasas casi periddicas, puede generar predicciones erréneas sobre los valores de las variables.
En tales escenarios, se podrian obtener prondsticos engafiosos que pueden llevar a los responsables de la toma de decisiones
a disefiar estrategias equivocadas, lo cual puede tener impactos negativos desde una perspectiva de salud.

Palabras Claves:

Metabolismo del plomo, Metabolismo de metales, Funcién casi periddica, Sistemas cooperativos, Atractor global
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INTRODUCTION

L ead poisoning has been a critical public health concern

in developing countries for at least 50 years. Lead has
been recognized as one of the top ten chemicals of major
public health concern. The main physiological consequences
of lead exposure include disruption of heme synthesis, in-
terference with Ca-mediated cellular processes, impaired
mitochondrial respiration, and oxidative stress (Needleman,
2004; Flora et al., 2012). The spectrum of clinical outcomes
includes cognitive impairment, and developmental delays
in children, as well as hypertension, renal dysfunction, and
reproductive toxicity in adults (Gidlow, 2015).

Lead exposure can occur through various sources, includ-
ing lead-based paint, contaminated soil, and dust (Assi et al.,
2016) as well as lead-based solder in water distribution sys-
tems (Jarvis and Fawell, 2021). It is estimated that 20%
of total lead exposure in the United States occurs through
drinking water. Importantly, current determination meth-
ods were found to underestimate lead concentration in water
from faucets, both in households and schools (Triantafylli-
dou and Edwards, 2012). Lipsticks sold in Mexico but pro-
duced elsewhere, were found to contain 1.17 — 1.82 ppm of
lead (average 1.45 ppm). While these concentrations fell
within the FDA regulations (10 ppm), lead in lipsticks from
Ghana exceeded said limit, indicating potential neurotoxic
effects (Saah et al., 2024).

Bioaccumulation of lead across various tissues explains
its systemic toxicity. The rate of bioaccumulation depends
on the exposure route and duration, together with age, nu-
tritional status, and genetic predisposition. Briefly, upon ab-
sorption by inhalation or ingestion, lead travels through the
bloodstream, and is gradually deposited in mineralizing tis-
sues such as bones and teeth. Other organs with detectable
concentrations of lead include liver, kidneys, and brain. Lead
leaves the body mainly through feces, with urine being a mi-
nor ways of excretion.

The dynamics of metal metabolism has been analyzed
trough several types of mathematical models, including qual-
itative regulation models, stochastic models, multi-agent
models, and differential equation models (Curis et al., 2009).
Importantly, the differential equation models are the most
used. Typically, differential equations models of metal
metabolism pay no special attention to the biochemical re-
actions between the metal and the human body. Instead,
metal metabolism is viewed as smooth fluxes of matter and
elimination processes that are modeled assuming a first or-
der kinetic of diffusion processes. These assumptions lead
to linear models whose solutions can be obtained analyti-
cally. Examples of application of linear differential mod-
els in the context of metal metabolism, include alkali metals
such as lithium (Swann et al., 1990), sodium (Levin and Pat-
lak, 1972); alkaline earth metals like calcium (Aubert e al.,
1963), magnesium (Upton and Ludbrook, 2005), strontium
(Bauer and Ray, 1958); transition metals including cadmium
(Redeker et al., 2004), chromium (O’Flaherty et al., 2001),

cobalt (Kahle and Zauke, 2002), copper (Ferreira et al.,
2009), iron (McLaren et al., 1995), mercury (Farris et al.,
2008), nickel (Luciani and Polig, 2007), ruthenium (Beres-
ford et al., 1998), silver (Beresford et al., 1998), vanadium
(Azay et al., 2001), zinc (Yokoi et al., 2003); lanthanides
cerium (Beresford ef al., 1998), lanthanum (Bronner et al.,
2008); actinides such as americium Luciani and Polig (2007),
plutonium Polig et al. (2000), uranium (Fisher et al., 1991);
post-transition metals like aluminum (Yokel and McNamara,
2001), lead (Pounds and Leggett, 1998) and the metalloid
selenium (Patterson and Zech, 1992). All models mentioned
assume constant transition rates.

Mathematical models describing the kinetics of lead
metabolism rely on clinical data monitoring the concentra-
tion of lead in several compartments. Such models have
proved critical for risk assessment, exposure estimation, and
public health intervention. Foundational work such as the
Rabinowitz three compartment model with constant coeffi-
cients, emphasized the dynamic equilibrium between com-
partments. Other models introduced more physiological re-
alism (Leggett, 1993). For example, letting parameters de-
pend on sex and age allows for simulation of lead kinetics
across lifespan stages. More recently, models have incor-
porated tissue specific uptake and clearance rate, as well as
mineral turnover rates, enhancing model applicability to en-
vironmental and exposure scenarios.

Modeling kinetics of lead metabolism in the human body
trough differential equations with constant rates can be mis-
leading, since the effects caused by both endogenous and ex-
ogenous factors involved in the lead metabolism are over-
simplified. For example lead intake from various sources
is not constant, due to intrinsic variations in each exposure
route. As a consequence, the results obtained from linear
models leave out scenarios that may be relevant from a health
perspective. On top of that, traditional models with con-
stant rates provide only a first glance at the dynamics of lead
metabolism. This is particularly true in cases in which in-
dividuals are both periodically and aperiodically exposed to
quantities of lead from non-constant sources so varied as diet
or the atmosphere which can in turn alter the lead physiology
in these individuals.

Therefore, the aim of this paper was to formulate and ana-
lyze a compartment model for lead metabolism kinetics with
almost periodic rates. To incorporate biological mechanisms
with oscillatory behaviors in the lead metabolism, we used an
almost periodic model whose rates are given by linear combi-
nations of trigonometric functions which are not necessarily
synchronized. So, the use of almost periodic rates of tran-
sition between compartments offers a novel and important
insight with explanatory potential. Almost periodic mod-
els have been used to understand enzymatic reactions (Diaz-
Marin and Sanchez-Ponce, 2024), protein transcription dy-
namics (Diaz-Marin et al., 2023) and neuronal mechanisms
(Diaz-Marin et al., 2025) among other biological phenom-
ena when endogenous and exogenous stimuli give origin to
oscillatory dynamics.
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THE ALMOST PERIODIC MODEL

In this section, we propose a compartmental almost periodic
model to describe the dynamics of the lead metabolism in
the human body. We constructed the model from Figure 1,
a diagramatic model of lead metabolism proposed by Rabi-
nowitz and coworkers (Rabinowitz et al., 1976). Through
this model, the authors analyzed the lead concentrations in
blood, soft tissue and skeleton which are denoted by Xi, X»
and X3, respectively. Lead intake enters the bloodstream and
then transits to soft tissues and bones. Lead exits the body
through secretions.

Diet and Air

~ag K9
~7 B9 day . ug
day !5 day
X3 A31 . X1 A12 X2
7 K 2 M9
Bone —day Blood | —day_| Soft Tissue
i3 m 21
~36 9 ug
A l 36 Gay A l~1z Ty
Urine Bile, hair, sweat,

nails, ...

Figure 1: Diagramatic model of lead metabolism. The numerical
values are the mean transition rates which were estimated from
tracer an balance data from five healthy men Rabinowitz et al.

(1976)

Rabinowitz et al. (Rabinowitz et al., 1976) analyzed the
compartment model described in Figure 1 and concluded
that changes in lead concentration in bones are very slow
in comparison with blood and soft tissue. Therefore, they
constructed a mathematical model only with X; and X>.

Similarly, we constructed a mathematical model of lead
concentrations in blood and soft tissue by assuming that this
system is input-output connected by mechanisms with an os-
cillatory behavior. To do this, we used transition rates given
by almost periodic functions. The proposed model can be
written as

dX A(t) M;(t)

W = M (t) —A (I)Xl + A2 (l‘)WXQ,
dX2 . M] (t B
e Alz(t)mxl A (1)X,. (D)

In model (1), X;, for i, j = 1,2 denotes lead concentration
in compartment i at time ¢, M;(¢) is the mass of compartment
i, A(t) denotes the rate of recruitment of lead into compart-
ment X; from outside the body, A;(¢) denotes the rate for the
movement of lead out of compartment i. Finally, A;;(¢), with
J # i, denotes the rate for movement from compartment j to
i.

ALMOST PERIODIC FUNCTIONS IN COOPERA-
TIVE SYSTEMS

In this first part we summarize some well known basic facts
about the almost periodic functions and cooperative systems.
Almost periodic functions are nowadays a very active re-
search area. We give here only a very basic introduction to

the topic and refer the reader to (Bohr, 1947; Corduneanu,
1968) for further details.

Definition 1 A function ¢ € CO(R) is almost periodic if, for
all € > 0 there exist a set of real numbers T(€) C R alto-
gether with a length 1(€) > 0 such that for any interval of
length 1(€), there is at least one point T € T (€) contained in
that interval such that

[9x+7)—9(x)| <e

for each x € R. We will call numbers in T(€) translation
numbers and a length for T'(€) will be a number I(€).

The above collection of every almost periodic functions will
be denoted by AP(R) which is a Banach space endowed with
the usual sup —norm. It is possible to associate to an almost
periodic function ¢ its unique Fourier series:

O~ Z a(Ay)e™*,
neN
The exponents A, are called the frequencies of ¢. Another
well-known result in this area is that, for every almost peri-
odic function there exists the mean value

this is a bounded linear function .# : AP(R) — R with the
following properties:

1. ¢ > 0implies .Z[¢] > 0.

2. The Parseval equality holds:
MNP =Y la(A).

neN

Now we review some aspects about cooperative systems,
for a brief introduction to cooperative systems see (Smith,
1995). For two points u,v € R? denote the partial order u <
v if u; < v; for each i, also denote u < v if u < v and u # v.
Let f,g: R x D C R?® — R be a couple of differentiable and
almost periodic functions on the first variable. We consider

the system:
X (1) = f(t,x(t),y(1)),
y/(t) = g(hx(l),y(t)),
where we suppose that f(,x,y),g(¢,x,y) are both uniformly
almost periodic with respect to (x,y) € C for every compact
C C D, i.e., the set of translation numbers, 7(€), is indepen-
dent of (x,y) € C.
More specifically, if f have generalized Fourier expan-
sions,

2

ft,x,y) ~ flx,y)+ Z a(f,An)cos(Ant) +b(f,Ay) sin(Ayt),
n=0

f is uniformly almost periodic, whenever the coefficients

a(-,Ay),b(-,A,) do not depend on (x,y), see (Corduneanu,

1968), Chapter VI.
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Definition 2 We say that (2) is of the cooperative type, if for
everyt € R,

d
Loanz0 Fuxyzo

Moreover, (E(r),n(t)) is sub-solution if

£ <
<

Analogously, we define a super-solution (Z(¢),H(t))
versing inequalities. A pair (§(t),m(t)) and (E(¢),H(t)) is
ordered if

[I]

S(t)<E@), n(t)<H(), VieR.
We will use the following result proved in (Diaz-Marin
et al., 2022).

Theorem 1 Suppose that (&(t),n(t)) and (E(t),H(t)) is
a sub-super-solution ordered pair of the cooperative ODE
(2). Then, there exists an almost periodic solution satisfy-
ing E(t) < x(t) < E(t) and N(t) < y(t) < H(t). The set of
almost periodic solutions, having initial conditions in the
rectangle £(0) < x(0) < E(0) and n(0) < y(0) < H(0),
is totally ordered, provided there is no equilibrium. If
(F(®),5@)), 3(),5(r)), denote the minimal and maximal al-
most periodic solutions. Then
X(1) <x(r) <£(r), (1) <y() <9@).

Note that in the case where there is an equilibrium point,
we could have an equilibrium instead of a genuine almost
periodic orbit.

RESULTS

As usual for an almost periodic function v: R — R, we de-
note
vy :=infv(¢) and v* :=supv(t).
1eR 1€R
Now we state the main result for the almost periodic ki-
netic model given by (1).

Theorem 2 Assume A(t),M;(t), Ai(t) and A;j(t) are continu-
ous almost-periodic functions (not all constant) with A, > 0,
M > 0,4 > 0, > 0 and that there is no equilibrium
point of (1) with positive coordinates. Suppose further that

MiAij\* .. ..
(Aj> <A‘j*a l#],fOrl,]:l,z. (5)
M;

Then, there is a unique almost periodic solution (X1,X>) of
(1) whose components are positive. Also, any other solution
of (1) with positive initial conditions converges to this almost
periodic solution, when t — oo,

Proof A careful examination shows us that system (1) is of
cooperating type. Let us first establish the existence of at
least one almost periodic solution, for this, we need to pre-
scribe suitable sub- and super-solution pairs. To develop a
sub-solution pair, we consider

(&(0),n())

these functions satisfy the inequalities in (3), indeed

=(g,0),€>0,

(=0 < [1;‘1(2) —Als],

=

=
Il
o

IN

[,112%; - 12(0)} .

The right sides are positive for € > 0 small enough. Thus we
have a sub-solution pair.
For a super-solution pair; we consider

(E(1),H(1)) =

these functions verify:
A(t) Mz)tzl
— — | A1« N
M { 1x+ (
N.

A(l‘) Mz)uz]
> 2V
z MN + ( )

M A2
N{( M> ) _M*]
> N[Mlllz_lz].

By letting N big enough and using (5), the right sides are
negative, thus constituting a super-solution pair.

Therefore, by Theorem 1 there exists at least one almost
periodic solution for system (1). This concludes the exis-
tence.

For uniqueness, we consider a maximal pair (X 1 ,Xz) and
minimal pair (X;,X>) of almost periodic solutions. We just
need to prove that X; (t) = X, (t) and X, (¢) = X»(¢). For which
we will use the following well-known statement

(N,N), N >0,

En)()=0 >

H({t)=0 >

Claim 1 Let ¢, be almost periodic functions such that
00)=¢() =0,  A[¢]=.#[8].
Then ¢(t) = §(t) for everyt € R.
Note that the mean .7 [(X;)'] = .4 [(X;)'] =0, then

M,'}\,,'j

[ M5 (5 3)| = [y (55 X)) i A1 ©
J

Hence, from (6), we get
Mol \* o v
< (%) ()
2

S 2’2* )*% [X] —le] .

Aot [B— 4]
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If # [)A(l 7)21] > 0, the above inequality contradicts the
condition in (5). Therefore .# [X;] = .# [X,], whence X; =
X1 by the Claim 1. This in turn implies that X, = X via (6).

For completeness, we will give proof of the above claim.
Proof Since ¢(r),§(r) are almost periodic, then they are
bounded. Hence,

Therefore, .4 [$?] = .4 [$?]. Thus,

~

0 < (G- §P) <2 (] - [69)

~

<
< 2 (3]~ [§]) =0

If we apply Parseval’s Theorem on the sum of the squares of
the Fourier coefficients of ¢ — ¢ we get ¢ = . |

Finally, we can conclude the proof of Theorem 2.

From the first part, we can take an arbitrarily small sub-
solutions. Also we can take an arbitrarily large super-
solutions. Thus we have a single almost periodic orbit which
is an attractor at the entire set R2>0- This completes the proof
of Theorem 2.

|

NUMERICAL SIMULATIONS OF THE
TIONS OF THE MODEL

SOLU-

In this section, examples of the behavior of the solutions of
model (1) are shown. To do this, we use the following func-
tions to model almost periodic scenarios.

A(r) = Aq(Ap+Acsin(Agr)+A.cos(Aft)),

Mi(t) = My, (Mlb-‘r-MlcSin(Mldt)—‘ereCOS(let)),
My(t) = Maq (Map+ Mo sin(Mogt) + Mae cos(Mayt))
M) = A (A]b—F/'L]C sin(Ay4t) + A1 COS(l3fl)) ,
M(t) = A (A +Aaesin(Aaat) + Az cos(Asst))
Aat) = A3q(Asp+ A3 sin(k3dt) + Aze COS(),3f[)) ,

A1 (t) = My ()~4b + Age sin(Mdt) + Ade COS(LLft)) .

@)

For the numerical simulations given in Figure 2, we use
the following values of the parameters A, = 0.048,4, =
1.0,A, = 0.2,4; = v0.03,A, = 0.5,A5 = V0.05,M, =
0.754,My;, = 1.0,My. = 0.1,M1; = V/3,My, = 0.7,M; =
V5, My =2.985, My, = 1.0, Mo = 0.005, Moy = \/3,M>, =
0.004, Mz = V/5,A1q = 0.16,A15, = 1.0, 1. = 0.01, 414 =
V3, e = 0.04, 417 = V5,4, = 0.012,4 = 1.0,A3c =
0.3, = V3,4 = 0.02,A2y = V5,43, = 0.015, 13, =
1.0,7L3C = 0.04,1351' = \@;lk = 0.5,7L3f = \6,},4(1 =
0.002, Agp = 1.0, Age = 0.4, Aag = /3, Aae = 0.02, Aay = /5.

With these values of the parameters, (%) =0.13534

and (%22)" = 0.0012756 while 21 = 0.1520414456 and

0.008170694320. Therefore, the conditions in Theorem 2
given by (MZC,I;L i ) < lj*, i # J, are satisfied. So, the solutions
J

of the model converge to a unique almost periodic attractor,

for all initial conditions. In Figure 2, we show this scenario
using the initial conditions: (0.0035,0.98), (10.0035,0.85),
and (5.0035,1.1).

_Solutions of the almost periodic model
10

T 6
&7
o
=
4
'-\"f‘/‘\\;é"u"t’/:\\ x\,,.z'/;:“
2- ]
0
0 100 200 300 400 500 600
Time
()
Solutions of the almost periodic model
T — P — .
1.4
1.3
E 2
ol
oA
1.0
1
0.9
0.8 ]
0 100 200 300 400 500 600
Time

(b)

Figure 2: Solutions of the model converge to a global almost
periodic attractor.

In Figure 3, we show the behavior of the solutions of the
model when all its rates are assumed to be constant. To do
this, the values of the parameters A ;, M ;, ls_,., in (7), are zero
for j =c,d, k=1,2, and s = 1,2,3,4. All other values of
the parameters of the model are the same that those used in
Figure 2. Notice that, the solutions of the model tend to a
global attractor and the solutions of the model do not present
an oscillatory behavior.

In Figure 4, solutions of the model are shown simultane-
ously for the cases of almost periodic rates and constant rates.
The values of the parameters in these cases are the same used
in the numerical simulations given in Figures 2 and 3, respec-
tively. In this case, we use functions where the almost peri-
odic rates oscillate around the values of the constant rates.
In this case, the solutions of these scenarios are close at the
beginning of time; however, the almost periodic solutions do
not oscillate around the equilibrium solution of the model
with constant rates at the long term.

Finally, for comparison purposes, in Figure 5, we show
the solutions of the model in the almost periodic and
periodic cases. For the almost periodic case, we use

doi: 10.58560/rmmsb.v05.€.025.02


https://doi.org/10.58560/rmmsb.v05.e.025.02

7 of 11 A MODEL TO DESCRIBE THE KINETICS OF LEAD METABOLISM

10[,

0 100 200 300 400 500 506
Time
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12]

11- 1
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(b)

Figure 3: Solutions of the model tend to an equilibrium point
when all its rates are constant.

Rates almost periodic and constant rates

3.0 -
25 !
200 ]
= 1
kF - 4
515
1.0 ]
0.5 :
0.0+ -
. . . L . .
0 100 200 300 400 500 600
Time
()
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1.0 ]
ngl ]
o ]
=
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Bt LB 1
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0.6 ]
. . . ! . ‘.
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Time
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Figure 4: Solutions of the model in the almost periodic and
constant case.
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one case given in Figure 2. In contrast, for the solu-
tions in the periodic case, we used the following param-
eter values Ay = v/0.04,A¢ = v0.09.M,, = V4, My =
V9 My = VE Moy = V9,0 = Vil = V9,0 =
V4, 20d = V9, e = V4, 130 = V9, Aae = V4, Aag = /9. All
other values of the parameters are the same as those used in
Figure 2. Observe that the solutions in each case converge
to a global attractor, which is an almost periodic or periodic
solution, depending on whether the model is periodic or al-
most periodic. Notice that, the solutions of the model in both
cases are very close initially; however, as time passes, there
are intervals of time in which the solutions diverge.

3.0

25

X1(x}

1.0
0.5

0.0

Time
(a)

Solutions of the periodic and almost periodic model
PR S B

Lod A
» u-.r*"‘, RIS S f:
l’_f

0 100 200 300 400 500 600
Time

(b)

Figure 5: Solutions of the model in the almost periodic and
periodic case.

We use the Sobol method, which is a variance-based
global sensitivity analysis, to perform a sensitivity analysis
of the solution (X,X;) of model (1), with respect to the pa-
rameters X=(A(l),M1(t),M2(t),)~1(l)Jq(l),)le(t),)Ql(l)).
This method decomposes the variance of the output of the
model into fractions which can be attributed to sets of inputs
using a sensitivity index. To obtain the results shown in
Tables 1 and 2, we use the python library Salib (Herman
and Usher, 2017) with the values of the parameters given
by A, € [0.28,0.95],M}, € [1.1,1.9],M», € [2.7,3.1],A1, €
[0.64,0.68],A2, € [0.72,0.76],A3, € [0.15,0.35], A4y €
[0.18,0.42]. All other values of the parameters of the model

are given by those used in the simulation shown in Figure 2.

From an analysis of Tables 1 and 2, we can conclude that
the variance in X| is dominated by the direct effect of the pa-
rameter A(7) (accounting for almost 60%). Although there is
an interaction component, the sum of the S; (= 0.934) is very
close to 1, indicating that the model is close to being additive.
The parameters A1 (¢) and Ay (¢) are the ones that depend
most on interactions to exert their total influence on X;. The
variance in X(¢) is explained almost entirely by A12(¢) and
A(r), but the role of interactions is more pronounced than in
X . The parameter A;,(¢) is not only the dominant one, but its
interactions (0.0726) are the greatest source of non-additive
variance in the model. This suggests that to control X, (r),
it is necessary not only to estimate Aj5(¢) with precision, but
also to understand how it combines with the variation of other
parameters (especially A(r)).

DISCUSSION

Lead is the second most toxic metal, naturally found in a
very limited amount. Since lead serves industrial purposes,
the magnitude of a society “s industrial sector can be thought
as proportional to the scenarios of lead pollution. Examples
of pollution are mining, and pollution of agricultural soils as
well as water. Workers of, and neighborhoods around these
industries often present health issues caused by long-term ex-
posure (Raj and Das, 2023).

Mathematical models have been used to understand a large
variety of problems derived from metal metabolism (Curis
et al., 2009). Among those, compartmental models, given by
differential equations have been widely used to describe the
evolution of a chemical species (a drug or lead concentration)

Table 1: Sobol Index Results for the solution X; () of the
model.

Interaction
Parameter S (£ 10) St (£ 10) St—S1)
A(r) 0.5969+0.0324  0.63224+0.0278 0.0353
M (1) 0.1524+0.0176  0.1724+0.0086 0.0199
M (1) 0+0 0+0 0
A1 (1) 0.00524+0.0039 0.0070 £0.0004 0.0018
A (1) 0.0008 +£0.0014  0.0012+0.0001 0.0004
A (1) 0.0935+0.0154 0.1243+0.0078 0.0308
A1 (7) 0.09124+0.0140 0.1248 £0.0079 0.0335

Table 2: Sobol Index Results for the solution X () of the
model.

Interaction
Parameter S{ (£10) St (£ 1IC) St—S1)
A(t) 0.3823+0.0258 0.4361+0.0252 0.0538
M (1) 0+0 0+0 0
My (1) 0.006040.0041  0.0077 +0.0006 0.0017
A (1) 0.0049+0.0032  0.0067 +0.0005 0.0018
A (1) 0.0051+0.0031  0.0070+0.0005 0.0019
A (7) 0.4583+£0.0297 0.5309+0.0284 0.0726
A (1) 0.0609+0.0134  0.0945+0.0071 0.0336

doi: 10.58560/rmmsb.v05.€.025.02
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First and total order Sobol indices for the final state of X;

First Order Index (S1)
12 == Total Order Index (57)

Index

Alt) Ma(t) Ma(t) Awlt) Aa(t) Ar(t) Azlt)
(a)

First and total order Sobol indices for the final state of X;

First Order Index (S1)
12 = Total Order Index (s7)

Index

Alt) My(t) My(t) M(t) As(t) An(t) Axn(t)

(®)

Figure 6: Cases (a) and (b) show the Sobol indices for the
solutions X and X, of model (1), respectively. The calculated
indices, determined for several ¢; values, were found to be
independent of #;.

in any compartment of the body. To do this, modelers usually
assume that diffusion between compartments follows-first or-
der kinetics, in which transition rates are assumed constant.
The resulting model is linear independently of its complex-
ity. As a consequence, its analytical solution can be obtained
and the concentration of the chemical species is known at
all times. The usefulness of linear models depend on its as-
sumptions being met. When first order kinetics do not apply,
a linear model does not adequately describes the dynamics of
the chemical species among compartments. This is the case
of environmental drives, which affect some transition rates in
the modelling process.

In this work, we propose an almost periodic differen-
tial equation model that generalizes the model for lead
metabolism proposed in (Rabinowitz et al., 1976). For this
purpose, the rates of the model were taken as almost peri-
odic functions. The physiological basis rely primarily on
circadian clocks, as well as nutritional status: Intestinal ab-
sorption of lead is known to increase in the fasted state,
and with iron/calcium deficiency (Ragan, 1983). Therefore,
lead intake is expected to oscillate for populations with sea-
sonal food insecurity, or regular dietary cycles. Addition-
ally, lead concentration in blood is likely to follow a circa-
dian rhythm: Markers of bone resorption peak at night/early
morning (Bjarnason et al., 2002). This means that bone-
stored lead released into plasma peaks on an almost daily
basis. Renal excretion is also known to show circadian

rhythmicity: urinary flow as well as solute excretion (in-
cluding metals) decrease during the night (Solocinski and
Gumz, 2015), adding to the concentration of lead in periph-
eral blood. Other sources of variability have also been de-
tected. For example, maternal blood lead is known to in-
crease during pregnancy. In this context, bone contributes a
large fraction of the blood lead levels (Gulson et al., 1997).
In summary, lead metabolism is not constant, as early models
portrayed. Rates of metabolic intake, deposition and excre-
tion are likely to be under the influence of at least two almost
periodic drivers, supporting our approach to the mathemati-
cal modelling of lead dynamics in the human body.

From an analysis of the existence and uniqueness of al-
most periodic solutions of the model, we proved that the
model admits a unique almost periodic solution when the
conditions in Theorem 2 are satisfied. We further proved
that this almost periodic solution is a global attractor. There-
fore, for every initial condition, the solutions converge to
this almost periodic attractor; see Figure 2. Importantly, we
showed that the choice of constant over almost periodic rates
has a profound effect on the overall dynamics. In particular,
constant rates tend to underestimate lead concentration when
compared to almost periodic rates (Figure 4). Notice that so-
Iutions associated with both scenarios are close at the begin-
ning of time, but they separate as time goes by. Through nu-
merical results, in Figure 4, we show that small variations in
the rates of the model lead to very different scenarios, which
means that health decision makers must be cautious when in-
terpreting model outputs obtained from clinical data, due to
natural variation.

A similar situation was observed when comparing periodic
and almost periodic rates. A side by side comparison (Figure
5) shows that the concentration of lead can be either under
or overestimated by the model with periodic rates. In Figure
5, it is shown that the solutions of the model are close at
the beginning of time; however, in future times, there are
intervals of time in which the solutions are close and there are
intervals in which they separate. Through these scenarios,
we show that misleading forecasts can occur if periodic or
constant rates are used to model lead metabolism since the
input and output of lead in the body are neither constant nor
periodic. In such a situation modeling lead metabolism with
almost periodic model might be a better alternative.

From the Sobol analysis, we can conclude that X; is more
sensitive to the parameter A(¢), while X; is more sensitive to
changes in A;2(¢) together with its other interactions, espe-
cially with the parameter A(¢). That is, for X, the sensitivity
is primarily linear with respect to A(¢), whereas for X;, the
sensitivity is nonlinear.

Lead metabolism has been analyzed in different compart-
ments such as bone, blood and soft tissues or through other
refinements; for example, for one in which soft tissue is sub-
divided into liver, kidneys and neural tissue or one in which
mineralized tissue can be subdivided into bones and teeth.
Therefore, future refinements of our present study may in-
clude additional compartments.
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RESUMEN

Este estudio presenta un modelo tritréfico que describe las interacciones entre una presa, un predador dominante y un meso-
predador, incorporando depredacidn intragremial, competencia interespecifica y respuestas funcionales mixtas (tipo Il para el
predador tope y tipo II para el mesopredador). A través de un andlisis de estabilidad local, se identifican las condiciones bajo
las cuales puede sostenerse la coexistencia de las tres especies. Los resultados revelan que el equilibrio con coexistencia solo
es viable en un subconjunto estrecho del espacio de parametros, lo que evidencia la fragilidad estructural del sistema. El me-
sopredador se destaca como el componente mds vulnerable, susceptible a ser excluido ante variaciones en tasas de consumo o
mortalidad, especialmente cuando enfrenta simultdneamente presion del predador dominante y una oferta limitada de presas.
Asimismo, se destaca el papel clave de la capacidad de carga de la presa como pardmetro clave, capaz de inducir transiciones
cualitativas en la dindmica del sistema y definir umbrales criticos para la persistencia de los niveles tréficos superiores. Este
trabajo aporta una base teérica para comprender como se configura la estabilidad ecoldgica en sistemas con competencia
intragremial y ofrece criterios relevantes para la conservacién en ecosistemas sujetos a presion antrépica o fragmentacion.

Palabras Claves:

Biomatematica, Ecologia Matematica, Biotecnologia Matematica, modelo tritréfico, depredacién intragremial, respuesta fun-
cional mixta

ABSTRACT

This study presents a tritrophic model describing the interactions among a prey, a dominant predator, and a mesopredator,
incorporating intraguild predation, interspecific competition, and mixed functional responses (Type III for the top predator
and Type II for the mesopredator). Through local stability analysis, the conditions under which the coexistence of the three
species can be sustained are identified. The results reveal that the coexistence equilibrium is viable only within a narrow
subset of the parameter space, thus highlighting the structural fragility of the system. The mesopredator stands out as the
most vulnerable component, susceptible to exclusion due to variations in consumption or mortality rates, especially when
simultaneously facing pressure from the dominant predator and a limited prey supply. Likewise, the key role of the prey’s
carrying capacity is highlighted as a crucial parameter, capable of inducing qualitative transitions in the system’s dynamics
and defining critical thresholds for the persistence of the higher trophic levels. This work provides a theoretical basis for
understanding how ecological stability is configured in systems with intraguild competition and offers relevant criteria for
conservation in ecosystems subjected to anthropic pressure or fragmentation.

Keywords:

Biomathematics, Mathematical Ecology, Mathematical Epidemiology, tritrophic model, intraguild predation, mixed functio-
nal response
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INTRODUCCION

omprender la dindmica de los ecosistemas requiere
C analizar las interacciones entre las especies que los
componen. Entre estas interacciones, las relaciones tréficas
permiten explicar como fluye la energia a través de los nive-
les bioldgicos y como se estructura la biodiversidad. La eco-
logia tedrica ha abordado estas relaciones mediante el desa-
rrollo de modelos que representan de forma simplificada las
complejas redes de alimentacién que sostienen a las comuni-
dades naturales.

CADENAS TROFICAS

Las cadenas tréficas representan la jerarquia de los orga-
nismos segun su rol en el flujo de energia de los ecosistemas.
En la base se encuentran los productores primarios o auté-
trofos, como plantas y algas, que convierten la energia solar
en biomasa. Estos son consumidos por los herbivoros o con-
sumidores primarios. Luego, aparecen los mesopredadores,
que se alimentan de herbivoros, y finalmente los predadores
tope o dominantes, que consumen tanto a mesopredadores
como a grandes herbivoros (Di Bitetti, 2008).

Los predadores dominantes cumplen un rol regulador cru-
cial en los ecosistemas, ya que afectan no solo a sus presas
directas, sino también a niveles troficos inferiores mediante
efectos en cascada, modificando la abundancia y distribucion
de diversas especies (Rumiz, 2010; Di Bitetti, 2008).

DEPREDACION

Dentro de las interacciones que ocurren entre diferentes
especies, una de las mds importantes para la estructuracién
de comunidades ecoldgicas es la depredacion (Romo and
Caicova, 2007). Esta interaccion adquiere una dimensién
particular cuando ocurre entre especies que pertenecen a
un mismo gremio tréfico, es decir, aquellas que comparten
nichos similares. En este contexto, se denomina depredacién
intragremio (Polis et al., 1989).

La depredacién intragremio puede emerger en escenarios
donde especies simpdtricas compiten por recursos semejan-
tes. Esta situacién puede derivar en competencia por interfe-
rencia, en la que los competidores menos eficientes interfie-
ren directamente con los mds especializados, lo cual puede
culminar en actos de depredacioén entre ellos (Polis et al.,
1989; Palomares and Caro, 1999; Grassel et al., 2015). A
diferencia de otras formas de competencia, esta interaccién
incluye el ataque, la muerte y el consumo del individuo afec-
tado (Polis and Holt, 1992).

MODELOS PREDADOR-PRESA

Uno de los métodos més basicos para proyectar los cam-
bios en el tiempo de una poblacién son las ecuaciones dife-
renciales (Kitzes, 2022). La idea fundamental es utilizar una
ecuacién que, a partir del nimero actual de individuos, per-
mita estimar el tamafio poblacional en un periodo futuro.

En ecologia tedrica, los modelos predador-presa constitu-
yen herramientas esenciales para representar las dindmicas
entre especies que interactian tréficamente. Estos modelos
permiten explorar cémo la depredacion influye en la estabi-
lidad y la coexistencia dentro de las comunidades ecoldgicas.

Uno de los primeros modelos de ecuaciones diferenciales
aplicados a relaciones interespecificas fue desarrollado
por Lotka y Volterra. Esta formulacién corresponde a una
extension del modelo logistico de crecimiento individual
de las especies, al que se le incorpora un pardmetro de
interaccion entre estas (Kitzes, 2022).

A partir de este enfoque, se han desarrollado diversas
formulaciones matemadticas que dieron origen a modelos te6-
ricos cada vez mds complejos para representar la interaccién
entre especies. La literatura cientifica reciente sobre modelos
predador-presa ha abordado temas como el andlisis de los
patrones temporales en funcién de diferentes respuestas
funcionales (Majumdar et al., 2022; Naik et al., 2022a; Jana
and Kumar Roy, 2022; Barman and Ghosh, 2022), asi como
los efectos ecoldgicos conocidos como el “efecto Allee” y
el “efecto miedo” en las presas (Li ef al., 2022; Naik et al.,
2022b; Devi and Jana, 2022; Lan et al., 2022; Gokge, 2022).

En particular, los modelos tritréficos extienden este mar-
co al incluir mdltiples niveles tréficos, permitiendo represen-
tar sistemas donde coexisten varios predadores que compiten
por presas comunes. Estos modelos ofrecen una descripcion
mads realista de la complejidad ecoldgica, facilitando el ana-
lisis de mecanismos como la depredacién intragremio y la
competencia tréfica entre predadores.

RESPUESTAS FUNCIONALES

La respuesta funcional es la relacién entre la tasa de
depredacion (Presas/tiempo) y la densidad de presas (Smith
and Smith, 2007). Holling (1965) tipificé las respuestas
funcionales en tres clases diferentes:

Tipo I: Esta respuesta funcional se basa en el supuesto de
que el cambio en la densidad de la poblacién de predadores
es proporcional a la densidad de la poblacién de presas dispo-
nible (x). La expresién matemadtica asociada a esta respuesta
corresponde a

x si 0<x<c
h(x) =

Y si c>x,

donde x es la densidad de presas. Se puede entender que
existe un aumento lineal de consumo de los predadores
respecto a la densidad de poblacién de presas, llegando a
un punto donde este valor es constante (Ej: fitoplancton y
zooplancton).

Tipo II: En este tipo de respuesta el niimero de presas con-
sumidas por el predador se incrementa pero con una tasa de-
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creciente, en funcion del incremento de la densidad de la pre-
sa (Badii et al., 2013). Es la llamada respuesta Monod de tipo
hiperbdlica, donde el pardmetro ¥ es la tasa maxima de con-
sumo percdpita y a es la tasa de saturacién media, es decir,
la cantidad de presas en el que la tasa de depredacion alcan-
za la mitad de su valor maximo (Garay-Gonzales, 2020). El
modelo que describe este comportamiento es

h(x) =

_a+x'

Tipo III: Los predadores con este tipo de respuesta tienen
una dieta basada en distintas especies de presas y su consu-
mo es proporcional a sus abundancias, cambiando a las es-
pecies mas abundantes y por tanto, permiten que las especies
con menor densidad poblacional tengan oportunidad de in-
crementar sus poblaciones de nuevo (Badii et al., 2013). Es
una respuesta sigmoidal que incluye la caracteristica de que
los predadores son ineficientes cuando los niveles de presas
son bajos, y descrita por Al-Moqgbali ef al. (2018). Su ecua-
cién matemadtica corresponde a

)C2
h(x) = -

X)) = —
a?+x%’

donde 7y a tienen el mismo sentido ecolégico que en la res-
puesta funcional tipo II.

CONDICION DE LIPSCHITZ LOCAL

La unicidad de las soluciones del sistema de Ecuaciones
Diferenciales Ordinarias (EDOs) se garantiza mediante la
condicién de Lipschitz local. Una funcién f(u) es localmente
Lipschitz continua en un dominio D si, para todo compacto
S C D, existe una constante L > 0 tal que para u,,up € S:

([€(uaa) — £(up) || < Lt = up |-

Cuando un sistema es continuamente diferenciable (C') en
el ortante positivo Rio, la condicién de Lipschitz local se
satisface automdticamente (Hirsch er al., 2013).

ESTABILIDAD LOCAL

Para analizar el comportamiento del sistema no lineal
en las cercanias de un punto de equilibrio, se emplea la
linealizacién del sistema a través de su matriz Jacobiana.
Aunque la dindmica completa puede ser altamente no
lineal, el sistema linealizado proporciona una aproximacién
local vélida siempre que el equilibrio sea hiperbdlico.
Esta propiedad estd garantizada por el teorema cldsico
de Hartman—-Grobman, el cual establece la equivalencia
topoldgica entre el sistema no lineal y su linealizacién en un
entorno del equilibrio (Edwards, 2013).

Asi mismo se pueden determinar las condiciones de esta-
bilidad sin calcular explicitamente las raices del polinomio
caracteristico, aplicando el Criterio de Routh—-Hurwitz. Este
criterio proporciona condiciones algebraicas necesarias y
suficientes, expresadas en términos de los coeficientes del

polinomio, que deben cumplirse para garantizar que todas
las raices tengan parte real negativa Thieme (2003).

A continuacién se presentan los dos resultados fundamen-
tales utilizados en este andlisis.

Teorema 1 (Teorema de Hartman—Grobman) Sea
F : R" - R" un campo vectorial suave asociado al

sistema dindmico
X=FX), X=(xy2).

Sea (x0,y0,20) un punto de equilibrio del sistema, y sea J la
matriz Jacobiana evaluada en dicho punto:

axfl a)’f] aZfl
J=|df2 df2 912
hfs hfs Oufs (%0,Y020)

El sistema linealizado asociado es:
X=J-X.

Si el equilibrio es hiperbdlico (esto es, el Jacobiano no po-
see valores propios con parte real nula), entonces el flujo del
sistema no lineal es localmente topologicamente equivalente
al flujo del sistema linealizado. En particular:

e SiRe(A;) < 0 para todo i, entonces el equilibrio es lo-
calmente asintoticamente estable.

o Si existe algiin A; con Re(A;) > 0, el equilibrio es ines-
table.

e Si alguno de los valores propios tiene parte real cero, el
equilibrio es no hiperbdlico y no puede determinarse su
estabilidad mediante la linealizacion.

Teorema 2 (Criterio de Routh-Hurwitz ) Sea F : R? —
R un campo vectorial suave y sea (xo,yo,20) un punto de
equilibrio. Sea J la matriz Jacobiana evaluada en dicho equi-
librio. El polinomio caracteristico de J es:

pA) =23+ 1A%+ A+ 13,

donde
T = — tr(J),
= Z M;;(J),
1<i<;j<3
73 = — det(J),

El equilibrio (x0,y0,20) es localmente asint6ticamente es-
table si y sélo si se satisfacen simultdneamente las siguientes
desigualdades de Routh—Hurwitz:

T >0, T >0, 73 >0, TIT) > T3.

En caso contrario, el equilibrio es inestable. Si alguna de
estas igualdades se anula, el sistema es no hiperbolico y la
estabilidad local no puede determinarse uinicamente a partir
de la linealizacion.
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AMORTIGUAMIENTO DINAMICO, FUERZA ESTABILIZA-
DORA Y UMBRALES DE PERSISTENCIA

El amortiguamiento dindmico se refiere a la velocidad
con la cual un sistema retorna a su equilibrio después de
sufrir una perturbacién. Formalmente, este comportamiento
queda determinado por la parte real de los autovalores del
Jacobiano evaluado en el equilibrio: cuanto mas negativa
es dicha parte real, mayor es el amortiguamiento y mas
rapidamente el sistema vuelve a su estado estable. Esta
interpretacion es estdndar en ecologia tedrica y se encuentra
desarrollada en trabajos cldsicos sobre estabilidad local y
resiliencia (May, 1973; Hastings and Gross, 2012).

La fuerza estabilizadora corresponde a los mecanismos
que promueven la coexistencia al reducir la intensidad de
la competencia efectiva entre especies. En el marco de
coexistencia propuesto por Chesson (2000), esta fuerza se
cuantifica mediante procesos que generan niche differences,
tales como variabilidad ambiental, particién de recursos
o respuestas no lineales al ambiente. Estos mecanismos
disminuyen la competencia interespecifica en relacién con
la intraespecifica, favoreciendo que cada especie se recupere
cuando es rara. Una mayor fuerza estabilizadora expande
la regiéon de coexistencia y fortalece la estabilidad de las
poblaciones bajo perturbaciones.

Por otro lado, los umbrales de persistencia definen las con-
diciones minimas bajo las cuales una poblacién o especie
puede mantenerse en el tiempo sin extinguirse. En modelos
deterministas, estos umbrales suelen expresarse como condi-
ciones para que exista un equilibrio positivo estable o Este
enfoque, ampliamente utilizado en teoria de coexistencia y
dindmica de poblaciones, aparece en trabajos fundamentales
como los de Kot (2001) y Chesson (2000). En sistemas mul-
tiespecificos, estos umbrales se vinculan a las condiciones de
invasibilidad y a la persistencia a largo plazo bajo oscilacio-
nes o variabilidad ambiental (Huisman and Weissing, 1999).

OBJETIVOS DEL ESTUDIO

Este trabajo tiene por objetivos:

e Formular un modelo tritréfico que incorpore depreda-
cién intragremial y respuestas funcionales mixtas.

e Analizar la estabilidad local de los puntos de equilibrio.

e Proponer condiciones para la coexistencia y exclusion
de las especies.

MODELO MATEMATICO

El estudio se centra en la dindmica de un ecosistema trofi-
co modelado bajo un esquema de predacién intragremial que
incluye un predador tope oportunista (x()), un mesopreda-
dor (y(t)), y una presa comtin (z(r)). El predador tope (x(z))
exhibe un comportamiento oportunista, consumiendo a sus
presas con una Respuesta Funcional (RF) de Holling Tipo

III. En contraste, el mesopredador (y(¢)) presenta una RF Ti-
po II sobre la presa z(r). El sistema incorpora la predacién
del mesopredador por el tope, mientras que la dindmica del
recurso se rige por un crecimiento logistico. Bajo estas con-
sideraciones, se formula el siguiente modelo:

ax _ 0N Py
o = (225 ) a0+ an (25 ) w00 it
dy _ () 1)’ ‘
E =0 (a3 z(,)))’(f)* a%+y(r)2 x(t)iﬁLv(t)v (1>
dz _ r<1 _ ﬁ) (1) (p02 x@),( 1) ) (t)
K )? @420 aytz(n) ) M)

==
donde los pardmetros son: 7, la tasa de crecimiento de la pre-
sa; K, la capacidad de carga constante del ambiente; ¥;, las
tasas maximas de consumo per cdpita; g;, las constantes de
saturacién asociadas a las respuestas funcionales; ¢, las efi-
ciencias tréficas de conversion de biomasa; y f3;, las tasas de
mortalidad natural de cada especie. Se asume que la eficien-
cia tréfica del predador tope es igual en todos los casos.

PROPIEDADES CUALITATIVAS DEL SISTEMA

El sistema ecolégico considerado presenta propiedades es-
tructurales que garantizan la relevancia bioldgica de las tra-
yectorias. En primer lugar, el ortante positivo

Riy={(x,y.2) :x>0,y>0,2z>0}

es un conjunto positivamente invariante. Esto se sigue
de la forma multiplicativa de las ecuaciones de x(z) y
y(t), y del caracter logistico de la evolucién de z(¢): si
x(0),y(0),z(0) > 0, entonces las soluciones permanecen en
dicho dominio para todo ¢ > 0.

Para formalizar estas propiedades esenciales, y dado que
las funciones del lado derecho del sistema son continuamente
diferenciables (clase C!) en R3>0 (lo cual implica la condicién
de Lipschitz local), podemos establecer el siguiente resultado
fundamental:

Teorema 3 (Existencia, Unicidad y Acotacion Global)

Para cualquier condicion inicial uy = (x0,Y0,20) en
el ortante positivo Rio, existe una tnica solucion
u(t) = (x(t),y(t),z(t)) que satisface el sistema de ecuacio-
nes. Dicha solucion es no negativa para todo t > 0 y estd
definida globalmente (no presenta explosiones en tiempo

finito).

Por otra parte, en ausencia de depredacién, la poblacién
presa estd acotada por su capacidad de carga, es decir,
z(t) < K. Como consecuencia, las poblaciones predadoras
también quedan acotadas, ya que su crecimiento maximo
estd limitado por la abundancia del recurso presa.

Estas propiedades garantizan que el sistema es bioldgica-
mente consistente, que no presenta explosiones en tiempo fi-
nito y que las soluciones existen globalmente.
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EQUILIBRIOS DEL SISTEMA

En esta seccion se determinan los puntos de equilibrio o
estacionarios del sistema, estableciendo condiciones paramé-
tricas para que sean reales y con significancia bioldgica. Los
puntos de equilibrio (x*,y*,z*) satisfacen el siguiente siste-
ma algebraico, obtenido al anular las derivadas temporales:

2 2
nz hy
o x+a | 5——= | x—Bix=0,
1((1%—0—22) I<a§+yz> A
2
1z hy
[0 —| 5——= |x— By =0, 2
2 <a3+z>y (a%+y2> BZ} ( )

2
_z2y._ (. n= _ ([ B _
r(l K)Z <a%+z2>x <a3+z>y 0

Los puntos de equilibrios del sistema corresponden a:

e Equilibrio trivial: (x*,y*,z*) = (0,0,0).

o Presas con capacidad de carga: (x*,y*,z") = (0,0,K),
cuando los predadores estan ausentes.

e Equilibrio con x =0, y # 0, z # 0:
En este caso se entiende que los dos predadores del sis-
tema se han extinto, por lo que el sistema se reduce a:

V32
o —B,=0,
2 <a3 +z> B

(- ()

Con esto se obtiene el punto de equilibrio:

x*=0,
L (1=2/K) _ rlas+2) (1 Z)
vz /(a3 +2*) v K)’
. a3
(s —B)

Para la existencia de este equilibrio positivo (donde y* >
0y z" > 0) se una condicion que relaciona la tasa de
crecimiento de la especie Y con la capacidad de carga K
y las tasas de saturacién y decaimiento, se expresa como

062}’3>ﬁ2(1+a7(3>.

Esto es equivalente a que el nivel de recurso Z requerido
para sostener a Y en el equilibrio (z*) sea menor que la
capacidad de carga K del ambiente: z* < K.

e Equilibrio con x # 0,y =0, z # 0:

En este caso, el mesopredador estd ausente, por lo que
se deben resolver las siguientes ecuaciones:

2
hz
a| -=——=|—-p1=0,
l(a%-i-Zz) ﬁl

2
z Nz
1_7) - ~0.
(-5 (22

Resolviendo este sistema se obtiene:

x*_W<1_Z*>
B K

y' =0,
. Bi

 =aI\| —————F

oy —PBi

En este caso, el equilibrio representa un escenario donde
el predador tope se mantiene gracias a la abundancia de
la presa, mientras que el mesopredador ha sido excluido
del sistema. La permanencia de este equilibrio positivo
se mantiene sujeta a que se mantenga

KZ
oy > P (H_ocz)’

1

lo que corresponde a la relacién de la capacidad de con-
sumo de el predador tope sobre la presa con su tasa de
mortalidad (B,), asegurando que el z no se sature al nivel
K

e Equilibrio Interior (x* > 0, y* > 0, z* > 0)

El equilibrio interior representa la coexistencia simul-
tdnea de presa (z), mesopredador (y) y predador tope
(x). Para determinar las condiciones bajo las cuales di-
cho equilibrio existe y es biolégicamente significativo,
se analizan las ecuaciones de equilibrio del sistema:

2 2
Nz Yy
'(a%+z2>+ '(a%+y2> Ai=0,
32 Yy
Q — —B,=0,
2(a3+z) (a%+y2>x P

2
S W Y (1 [ B2 _
r(l K)Z (a%+12>x <a3+z>y 0

Debido a la presencia de términos funcionales satura-
dos y componentes no lineales de tipo Holling II y III,
el sistema no admite una solucién analitica cerrada; sin
embargo, es posible obtener condiciones necesarias y
suficientes para garantizar la positividad de las tres po-
blaciones.

A partir de la primera ecuacién de equilibrio se aisla el
término dependiente de y, lo que motiva la introduccién
de la funcién auxiliar

D(Z) _ & _ 71Z2
o af+72

Esta sustitucién permite reescribir la condicién de equi-
librio en la forma

2
Py

:DZ7
a%+y2 ()
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donde la funcién del lado izquierdo pertenece al interva-
lo (0,7,) paratodo y > 0. En consecuencia, una solucién
positiva y* existe si y s6lo si

0<D(z) <,

lo que impone una primera restriccién de factibilidad
para la coexistencia. Esta desigualdad implica, en parti-
cular, que debe cumplirse

Bi

>7_
n o Y2,

condicién necesaria, pero no suficiente, para la existen-
cia de un intervalo de valores de z compatibles con un
mesopredador persistente.

El segundo requisito proviene de la ecuacién de equili-
brio del mesopredador, para la cual resulta conveniente

definir
32
<a3 + z) P

Con esta notacién, la expresion de equilibrio adopta la

forma
Yoy
x=E(z),
<a§+y2) ®

de modo que la existencia de un predador tope positivo
requiere que

E(z) =

E(z) >0,

lo que se traduce en la restriccién ecoldgica minima

B2

B> —.

Y- o

Esta condicidn garantiza que la tasa maxima de aprove-
chamiento del recurso por parte del mesopredador sea

suficiente para compensar su mortalidad intrinseca.

La tercera ecuacion de equilibrio, correspondiente a la
dindmica de la presa, permite reducir el sistema a una
tinica ecuacién escalar F(z) = 0 en la variable z, lue-
go de sustituir las expresiones de x(z) y y(z) deriva-
das de las relaciones anteriores. Dicha ecuacion deter-
mina los posibles valores de z* en equilibrio. La exis-
tencia de un equilibrio interior biolégicamente signifi-
cativo queda entonces supeditada a que la raiz positiva
7" de F(z) = 0 satisfaga simultdneamente las dos res-
tricciones fundamentales:

0<DE)<p vy E@E)>0.
En conjunto, estas condiciones delimitan la regién del
espacio paramétrico en la cual la coexistencia entre pre-
sa, mesopredador y predador tope es viable. Asimis-
mo, muestran explicitamente cémo las tasas de consu-
mo maximas, los pardmetros de saturacién y las tasas de
mortalidad condicionan la existencia del equilibrio inte-
rior, proporcionando una caracterizacion precisa de los
requisitos ecolégicos que permiten la persistencia de las
tres especies en el sistema.

ANALISIS DE ESTABILIDAD

En esta seccién se evalian las condiciones de equilibrio
interpretando los valores de la soluciones de la ecuacién ca-
racteristicas asociadas a la matriz Jacobiana evaluada en un
punto de equilibrio. Las soluciones que se evaluaron son la
solucién trivial, las presas a capacidad de carga, la exclusion
del predador tope, la exclusién de mesopredador y el equili-
brio interior. La matriz Jacobiana del sistema en términos de
sus derivadas parciales correponde a:

axfl ayfl azfl
J(X,y,Z) = 8)Cf2 any asz 5
hfs ofs 9f3

donde las derivadas parciales del sistema se expresan como:

dufi = i (a%%—izzz " a%yzj;) P

Dyl
i :alx(a%f_iy;lzz)z’

2

oifr = agz_izyz’
ofa= O%fiz _ﬁz_x(;fkyya%f
d.fr = OCZY(GZ@%V’
hfs = _a%}quz’
Khfs = _113}/3—&%27
dfs=r (1 - ?5) _x(az%yf:j)z - (asyfsz)z'

Evaluando estas expresiones en un punto de equilibrio
(x*,y*,z*) se obtiene la matriz Jacobiana linealizada, deno-
tada por

= I,

El andlisis de estabilidad se realiza a partir del polinomio
caracteristico de J* y sus coeficientes, que serdn tratados en
la subseccion correspondiente mediante el criterio de Routh—
Hurwitz. En las secciones siguientes se estudia la estabilidad
de los distintos equilibrios del sistema: la solucion trivial, la
presa a capacidad de carga, la exclusion del depredador tope
y la exclusién del mesodepredador.

SOLUCION TRIVIAL

La matriz Jacobiana evaluada en el punto de equilibrio
(0,0,0) corresponde a:

doi: 10.58560/rmmsb.v05.€.025.03
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B 0 0
J(0,0,0)=| 0 —B 0
0 0 r

La ecuacion caracteristica asociada a esta matriz es:

(=B1=2A) (=P =2A)(r—=2A)=0

Por lo tanto, los valores propios son:

M==-Bi, h=-p,

Como al menos un 4; tal que Re(4;) > 0, el equilibrio es
inestable.

}13:}’

PRESAS EN CAPACIDAD DE CARGA

Al evaluar el Jacobiano en el punto de equilibrio (0,0, K)
se obtiene:

nk?
B L 0 0
! a2 +K? B
K
7(0,0,K) = 0 a2~a37'3+K—B2 0
_ nk* _ K .
a%—|—K2 a+K

Con esto, la ecuacion caracteristica asociada a esta matriz
es:

nk? K
- ———-Pi—A]|-
(o0 Ao =p=2) (e 25

Y sus respectivos valores propios son:

BK

_ =0 -
Bl; 2 2a3+K

Az =—r

- B2,

La estabilidad del punto de equilibrio depende del signo de
los valores propios. Si todos los valores propios tienen parte
real negativa, el punto es localmente asintéticamente estable.
Para que el punto (0,0, K) sea asintéticamente estable, se de-
ben cumplir las siguientes condiciones:

}/1[(2
a - < 3
1 Cl% K2 ﬁl ( )
BK
. 4
(0%} p— < B2 )

La Condicién (3) asegura que la eficiencia tréfica del pre-
dador tope sobre las presas no sea demasiado alta en compa-
racion con su tasa de mortalidad natural. La Condicion (4),
establece que la eficiencia tréfica del mesopredador también
debe ser inferior a su tasa de mortalidad natural.

—pz—a> (—r—2)=0

EXTINCION DEL PREDADOR TOPE

Este punto de equilibrio corresponde a E3 = (0,y*,z%),
donde el predador tope (x) estd ausente y coexisten el me-
sopredador (y) y la presa (z). Para obtener la densidad de
equilibrio de la presa, z*, se parte de la ecuacién del meso-
predador y se impone la condicién de equilibrio Z—f = 0 bajo
el supuesto x = 0, lo que implica que

B
) =B
az+27*

Para simplificar el andlisis de E3, fue necesario definir el pa-
rdmetro auxiliar:

u:=0oy—PB
Asegurar que z* se real y positivo implica la condicién u > 0.
Despejando z*, se obtiene:

. _ azf
u

La densidad de equilibrio del mesopredador y* se obtiene de
la condicién % = 0,conx=0:

dt
. r(az +z¥) <1_Z*>
1 K

Para la existencia de y* > 0, es necesaria la condicion z* < K.

Definimos ademads las expresiones auxiliares:

oy =Tt ()

a3f
A = Z* = N

u bé

K

Evaluando la matriz Jacobiana en este punto se obtiene:

nA? »B
a — 0 0
: (a%+A2+a%+Bz B
" PB az
J'= — 0 B
&+B Gel ey
nA® »BA

2A as
1-2) —Bpy——
( K) B las AP

Dada las caracteristicas de la matriz, es posible deducir un
valor propio directamente:

G +A? T atA

nA? »B?
M=a + -
e (a%+A2 a3+ B> b

La estabilidad del equilibrio E3 requiere que A; < 0, lo cual
impide la recolonizacién del sistema por parte del predador
tope (x), ya que su tasa de ganancia neta es negativa en este
punto. Esta condicién se traduce en la desigualdad:

*2 *2

Yy

Z
&> n 2 2
as+y*

o oa+z?

®)

La estabilidad del subsistema (y,z) se rige por las raices
A2 3 de la submatriz inferior derecha, cuya estabilidad se ana-
liza mediante el Criterio de Routh-Hurwitz. El polinomio ca-
racteristico de esta submatriz 2 x 2 es de la forma:

PA) =22 +T0A+1=0
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donde los coeficientes 7; y 7, (derivados de la traza y el de-
terminante de la submatriz Jacobiana) estan dados por:

- as 2A
T1 —B’)/3 ((13 +A)2 r(l K)

as
T = OOBYBA——F—
2= 0BY (a3 +A)3

Aplicando el Criterio de Routh-Hurwitz, las condiciones
para que Ay 3 tengan parte real negativa son que ambos
coeficientes sean positivos (71, 72 > 0).

Dado que todos los pardmetros y las densidades A = z* y
B = y* son positivas, el coeficiente 7, siempre es positivo
(72 > 0). Esto garantiza el cumplimiento de la primera
condicién.

Por lo tanto, la estabilidad local del subsistema (y,z) queda
determinada inicamente por la segunda condicién, 7; > 0, la
cual asegura que A, 3 tengan parte real negativa, es decir:

as 2A
(%) ©

El término de la izquierda en (6), representa la fuerza
estabilizadora. Esta expresion mide la presién reguladora
de la depredacion ejercida por el mesopredador sobre la
presa. Cuanto mayor sea este valor, mayor serd la capa-
cidad del mesopredador para amortiguar las fluctuaciones
poblacionales. Por otro lado, el término de la derecha en
(6), representa la fuerza desestabilizadora o el potencial de
crecimiento neto intrinseco de la presa. Este valor es positivo
cuando la densidad de la presa A es inferior a la mitad de su
capacidad de carga (A < K/2), lo que indica una alta tasa de
crecimiento intrinseca que tiende a impulsar el sistema fuera
del equilibrio (un factor comiin que conduce a oscilaciones
en modelos presa-depredador.

Este comportamiento refleja un equilibrio ecolégico don-
de el subsistema (y,z) converge localmente a un estado esta-
cionario sin oscilaciones amplificadas, gracias a un balance
entre la productividad de la presa y la presion de depredacion
del mesopredador.

EXTINCION DEL MESOPREDADOR

Para el punto de equilibrio E4 = (x*,0,z"), donde el meso-
predador (y) estd ausente y coexisten el predador tope (x) y la
presa (z). La densidad de equilibrio de la presa z* se obtiene
de la condicién de equilibrio en la ecuacién de x, % =0, con
y=0:

*2
nae 8,

o =
a+72

Para un andlisis més simple de E4, se defini6 el pardmetro
auxiliar:

vi=an —Bi

Para que z* sea real y positivo, es indispensable la condicién
v > 0. Despejando z*, se obtiene:

/ 2
a
1%

La densidad de equilibrio del predador tope x* se obtiene de
la condicion % =0,cony=0:

ogr z*
Xf=—|1-=
B K
Para la existencia de x* > 0, es necesaria la condicién z* < K.
Definimos ademads las expresiones auxiliares:

ﬁla% ogr C
= *: —_— D:: *:7 1——
C:=z \/ v’ X B,

La matriz Jacobiana J* evaluada en este punto
E4 = (D,0,C) cumple, por definicién de z*, que el ele-
mento J;; = 0. La matriz es:

2Ca?
0 0 aD 1
1 '}’1( %+C2)2
»C
* = 0 o — 0
J 20t C B>
C? C 2C 2Cd?
- =D ’(1—*) —Dy
ad+C a3 +C K (a?+C?)

Notemos que el polinomio caracteristico de J* es de la for-
ma:

PA)=(1—A) (A2 + 1A +1) =0

donde los coeficientes 7y, 7| y 7, estan dados por:

2Ca?
T =0 — B I
az+C (a7 +C?)?
243
= DRC ——1—
? DY (a2 +C?)3

El primer valor propio es:

1C
a3 +C

— B

M=Jpn=m

Para que el equilibrio £, sea localmente estable, se requiere
que A; < 0, lo que implica la condicién de exclusion:

B w7
o az+z*

(7

Esta desigualdad asegura que la tasa de ganancia del
mesopredador (y) a partir de la presa (z*) es insuficiente para
compensar su mortalidad f3;, impidiendo su persistencia en
el sistema.
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Los otros dos valores propios corresponden a las raices del
polinomio cuadrético, que relaciona las dindmicas del preda-
dor tope (x) y la presa (z):

lz-f—Tll—FTz:O

Aplicando el Criterio de Routh-Hurwitz, las condiciones
para que A3 tengan parte real negativa son que ambos
coeficientes sean positivos: 71 >0y 7, > 0.

Dado que todos los pardmetros y las densidades C = z* y
D = x* son positivas, el coeficiente 7, (el determinante) siem-
pre es positivo (72 > 0). Esto garantiza la primera condicién.
La estabilidad local del subsistema (x,z) queda determinada
Unicamente por la segunda condicién, 7; > 0, la cual asegura
que:

2Ca? 2C
orie > (1-%) ®

Esta condicién exige que la fuerza de amortiguacién
generada por la depredacién del predador tope (D = x*)
sobre la presa (C = z*) sea mayor que el potencial de
crecimiento neto de la presa.

La estabilidad local del equilibrio E4 depende directamen-
te de la configuracién paramétrica del sistema. El equili-
brio es localmente estable si se satisfacen las condiciones
de existencia (v > 0y z* < K), la exclusién del mesopreda-
dor (A1 < 0), y la estabilidad del subsistema (x,z) (7 >0y
Tp > 0). El cumplimiento de estas condiciones implica que la
dindmica conjunta de la presa (z) y el predador tope (x) tien-
de hacia un equilibrio sin oscilaciones crecientes, mientras el
mesopredador (y) es excluido del sistema.

ESTABILIDAD LOCAL DEL EQUILIBRIO INTERIOR

Sea (x*,y*,z*) un punto de equilibrio estrictamente posi-
tivo de (1). El andlisis de estabilidad local se realiza a partir
del Jacobiano del sistema. Sea J* = J(x*,y*,z*) con entradas

10 de 14
\ n(z)? () )
Ji=a + — B,
! 1(@%+(Z*)2 a3+ (y*)? A
* 2 * 2
* hy a * * ZYIZ ay
T = oux . Th=ax L
2T G027 BT @+ ()22
J* _ YZ(y* 2
. )34 . 2pya3
I =a e e M
2=y P @ oy
* * Yzas
Tiy = oy —25
23 2y (a3+z*)2
o @) BT
R o
=r{l- - VIV .
K (a? +(z9)2)2 (a3 +7)?

Para simplificar la expresion del Jacobiano evaluado en el
equilibrio interior (x*,y*,z*), introducimos las funciones au-
xiliares

_ n@)? 0= nO*)? P
@i+ @) GO T at
y sus derivadas
p__2nTa o, 2wya o pa
zZ— 9 - 5 77— . .
(at + (z*)?)? T (@ +(7)2)? (a3 +2")?

Con esta notacion las entradas del Jacobiano se escriben de
manera compacta como

Jit = (P+0Q) - Bi, Tiy = aux™Qy,

Jik3 = alx*})za J;] = _Q7
1;2:a2S_B2_X*Qy7 J53:a2y*SZa
J3=—P, J3p =8,

* ZZ* * *
Jiz = r(l — K) —x' P, —y'S;.

A partir de estas expresiones, los coeficientes del po-
linomio caracteristico A3 + 7jA2 + »A + 73 se obtienen
directamente.

Primer coeficiente
T = —(J1 +JIn+75)

es decir,

T = —{Otl(P-f—Q)—ﬁl-i—OtzS—ﬁz—X*Qy

2 *
+r<1 - ;{) —x*PZ—y*SZ]
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Segundo coeficiente
T = (M1 —Ji2d51) + (N33 = JI1331) + Unad33 = Ioal3),
lo que conduce a la expresion
T = (a1 (P+Q)— i) (S —Br—x"0Q)) + oux"Q, 0
+ (o (P+Q)—B1)J33 + oux*P,P
+ (S — B —x"0Qy) 33+ 0y*S; S.
Tercer coeficiente.
73 = —det(J"),
con
7= [Jl* 12233 = I3d50) = I (U133 — o351
I Un T — i) |,

donde cada termino se construye en base a las definiciones
anteriores de P,Q, S, F;, 0y, S;.

Por tanto, las condiciones de Routh—Hurwitz escritas com-
pletamente en términos de las derivadas del Jacobiano eva-
luadas en (x*,y*,z*) son:

71 >0,

»>01>0, 717> 13,

donde (71,72, 73) se calculan con las férmulas precedentes.

SIMULACIONES NUMERICAS

El estudio analitico se complement6 mediante simula-
ciones numéricas que permiten describir de manera directa
la dindmica temporal del sistema al variar la capacidad de
carga K, entendida como un indicador de la productividad
del recurso basal.

Los pardmetros utilizados para las simulaciones fue-
ron: »r=1,0; ¢t =02, 1 =0,6; »=20,9; B =0,10;
ap=5,a;=15, ap =04, V3 = 0,5, ﬁg = 0,05 y az = 5,
mientras que las condiciones iniciales corresponden a
(XOJ’O,ZO) = (17 1730)

Las simulaciones se llevaron a cabo en el lenguaje R uti-
lizando las librerias deSolve y ggplot2 (Wickham, 2016).
En todos los casos se emplearon los mismos pardmetros y
condiciones iniciales, y el intervalo de integracién numé-
rica fue establecido en r = 600, lo que permitié identificar
con claridad el comportamiento asintético de las trayectorias.

La Figura 1 presenta los resultados de las simulaciones
para diversos valores de K. A partir de estas se identifican
los siguientes regimenes cualitativos:

e K = 1: Extincion de los predadores y presa en capa-
cidad de carga. Para valores muy bajos de K, la dispo-
nibilidad de recurso es insuficiente para sostener a los

niveles superiores. Tanto el mesopredador como el pre-
dador tope declinan rdpidamente hacia cero, mientras
que la presa converge a su capacidad de carga. El re-
sultado concuerda con la teoria: con baja productividad,
las respuestas funcionales saturadas no permiten soste-
ner a los predadores, que se extinguen mientras la presa
se estabiliza.

e K =5y K = 10: Persistencia del mesopredador y ex-
tincion del predador tope. En niveles intermedios de
productividad, el mesopredador logra mantenerse, pe-
ro el predador tope no alcanza densidades positivas. El
sistema converge a un equilibrio estable de dos niveles
tréficos (0,y*,z*), donde el mesopredador y la presa co-
existen con valores constantes en el tiempo.

e K=15,K =20y K = 25: Coexistencia estable de las
tres especies. Para valores moderadamente altos de K,
el recurso disponible permite la presencia sostenida de
las tres poblaciones. Las trayectorias convergen hacia
un equilibrio interior estable (x*,y*,z*), sin exhibir os-
cilaciones apreciables. En este régimen, la interaccién
tritréfica se estabiliza y las fluctuaciones son fuertemen-
te amortiguadas.

e K =30y K = 40: Oscilaciones persistentes. Para va-
lores altos de K, el sistema ya no converge a un punto
fijo. En cambio, se observa numéricamente un compor-
tamiento oscilatorio sostenido, compatible con la pre-
sencia de un ciclo limite. El aumento de la capacidad
de carga intensifica la retroalimentacion tréfica y genera
ciclos de mayor amplitud, un comportamiento tipico de
sistemas altamente productivos. Este fenémeno es con-
sistente con predicciones cldsicas en sistemas tritrofi-
cos, donde una mayor disponibilidad de recursos tiende
a desestabilizar las interacciones predador—presa (Ro-
senzweig, 1971; Hastings and Powell, 1991).

Las simulaciones numéricas revelan que la capacidad de
carga K actia como un determinante clave del comporta-
miento dindmico, dando lugar a una transicién desde la extin-
cion de los niveles superiores en ambientes pobres, pasando
por una region de coexistencia estable, hasta regimenes osci-
latorios persistentes en ambientes altamente productivos.

DISCUSION Y APLICACIONES

Los resultados de este estudio ofrecen una base tedrica
para entender cémo la estructura de las interacciones tréficas
influye en la persistencia o exclusién de especies dentro de
comunidades con competencia intragremial. En particular,
el mesopredador se muestra como el componente mas
vulnerable, especialmente cuando enfrenta simultineamente
presiéon por parte del predador dominante y una disponi-
bilidad limitada de presas. Este patrén ha sido observado
en diversos ecosistemas, donde grandes carnivoros reducen
la abundancia o restringen el rango de mesopredadores
mediante competencia o interferencia directa (Palomares
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Figura 1: Series de tiempo del modelo tritréfico para distintos valores de la capacidad de carga K.

and Caro, 1999; Roemer et al., 2009). Un estudio previo
(Mejias, 2023), en donde se analiz6 numéricamente un
modelo de similares caracteristicas, no se lograron generar
simulaciones sin que ocurriera exclusién competitiva de
alguno de los predadores. Esto dltimo, evidencia las comple-
jidades de mantener un equilibrio interior en el sistema.

Ademds de esta dimensién estructural, es importante
considerar el rol funcional de los predadores tope como
reguladores de las poblaciones de presas. Tal como sefiala
Rumiz (2010), los carnivoros cumplen una funcién de con-
trol biolégico que mantiene el equilibrio en las comunidades
troficas. La pérdida de este control puede desencadenar
ciclos de plagas y procesos de sobre consumo, afectando
la regeneracién vegetal y la biodiversidad local. Se ha
reportado que estas alteraciones pueden incluso provocar
extinciones locales de especies de plantas y animales (Rios,
2009).

Comprender estas dindmicas resulta esencial para el
disefio de estrategias de conservacion, ya que la desaparicion
del mesopredador o del predador tope puede generar efectos
en cascada que alteren tanto las poblaciones de presas como
los procesos ecoldgicos asociados (Prugh et al, 2009).
Ademéds, en paisajes fragmentados o sometidos a presién
antrépica, estas relaciones se vuelven atin mds inestables,

incrementando el riesgo de extincién local de especies
subordinadas (Newsome et al., 2017).

El anélisis de estabilidad local, utilizando el Criterio
de Routh-Hurwitz para manejar la complejidad algebraica
de los polinomios caracteristicos, proporciona una visién
detallada de los mecanismos que gobiernan la persistencia
y la exclusién de las especies en el modelo tritréfico. Los
resultados tedricos obtenidos, en particular las condiciones
sobre los polinomios caracteristicos, ofrecen una interpreta-
cién clara sobre el amortiguamiento dindmico y los umbrales
de persistencia.

Desde una perspectiva aplicada, las condiciones de
estabilidad y viabilidad identificadas en este modelo pueden
emplearse como indicadores para evaluar la resiliencia
ecoldgica de sistemas naturales. Asi, modelos tritréficos
con competencia interespecifica ofrecen una herramienta
util para anticipar escenarios criticos y orientar decisiones
de manejo como la reintroduccién de predadores tope o la
regulacién de especies clave en dreas de conservacidon o
restauracion ecoldgica.

En este contexto, la capacidad de carga de las presas (K)
actiia como un pardmetro clave, cuya variaciéon puede des-
encadenar cambios cualitativos en la dindmica del sistema y
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determinar umbrales criticos de invasibilidad y coexistencia.
En el estudio de (Escobar, 2009) se presentan varios modelos
que destacan la capacidad de carga como un factor limitante
para la existencia de soluciones interiores.

CONCLUSIONES

Este trabajo presenta un modelo tritréfico que describe
interacciones ecoldgicas complejas entre una presa, un
predador dominante y un mesopredador, considerando me-
canismos como la depredacién intragremial, la competencia
interespecifica y respuestas funcionales mixtas. El andlisis
de estabilidad local revela que la coexistencia de las tres
especies solo se sostiene bajo combinaciones especificas de
pardmetros, principalmente relacionados con la eficiencia
tréfica, las tasas de mortalidad y la capacidad de carga del
recurso basal.

El modelo presenta una alta complejidad técnica por la
cantidad de pardmetros involucrados y las no linealidades
que dificultan el andlisis algebraico directo, requiriendo
estrategias numéricas para su exploraciéon. No obstante,
esta complejidad permite capturar de forma mds realista
las dindmicas entre especies que compiten y se depredan
mutuamente.

A partir de la aplicacion sistemdtica del Teorema de
Hartman-Grobman y el Criterio de Routh-Hurwitz, se
establecieron las condiciones paramétricas necesarias y
suficientes para la estabilidad de los equilibrios definidos. El
andlisis tedrico demostrd que la estabilidad de los subsiste-
mas de coexistencia queda supeditada a condiciones donde
la fuerza reguladora de la depredacién debe ser superior al
potencial de crecimiento neto desestabilizador de la presa en
su densidad de equilibrio. Asimismo, se definieron umbrales
de exclusién y se identificaron puntos de transicién que
marcan las condiciones exactas bajo las cuales una nueva
especie puede emerger o ser permanentemente excluida.

Las simulaciones numéricas mostraron que la capa-
cidad de carga de las presas desempefia un rol central
en la regulacion y estabilidad del sistema tritréfico. Este
comportamiento concuerda con los patrones reportados
en la literatura, que destacan la importancia de la produc-
tividad basal en la dindmica de comunidades predador—presa.

Este estudio constituye un aporte a la comprension de c6-
mo operan las relaciones interespecificas en sistemas tréficos
mads alld del esquema cldsico presa—predador, ofreciendo un
marco tedrico para reflexionar sobre las condiciones que pro-
mueven la coexistencia o llevan a la exclusion de especies en
comunidades con multiples niveles de interaccién.
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ABSTRACT

Intraguild predation (IGP) arises when two consumer species exploit the same resource and also interact through predation.
Classical models of IGP typically include three dynamical variables and describe the resource explicitly. Here we introduce a
reduced predator-prey model in which both species depend on a shared resource that is not modeled directly. Instead, resource
use is represented through reciprocal reductions of carrying capacities, which captures the main mechanisms of IGP in a two
dimensional system that remains analytically tractable. The model exhibits extinction equilibrium, exclusion equilibrium,
and up to two coexistence equilibrium. We show that at most one of the coexistence equilibrium is locally stable. These out-
comes depend on the balance between prey reproduction and the combined effects of predation and exploitative competition.
Prey extinction occurs when its reproductive potential is lower than these antagonistic pressures, while coexistence becomes
possible when reproduction is sufficiently high. The analysis also reveals that no local oscillations can arise, which suggests
that exploitative competition has a stabilizing effect on the system. This reduced formulation provides a compact mechanistic
framework for studying IGP when resource dynamics are assumed constant or secondary. It also serves as a useful basis for
extending classical models and examining how asymmetric resource use influences species coexistence or exclusion.

Keywords:

Predator prey dynamics, Intraguild predation, Exploitative competition, Two dimensional models, Local stability, Saddle
node bifurcation

RESUMEN

La depredacién intragremial ocurre cuando dos especies consumidoras explotan un mismo recurso y ademads interactian
mediante depredacién. Los modelos cldsicos de depredacion intragremial suelen incluir tres variables dindmicas y describir
explicitamente el recurso. Aqui introducimos un modelo reducido de depredador—presa en el cual ambas especies dependen
de un recurso compartido que no se modela directamente; su efecto se incorpora mediante reducciones reciprocas en las
capacidades de carga, capturando los mecanismos esenciales de la depredacion intragremial en un sistema bidimensional. El
modelo presenta equilibrios de extincién, exclusién y por lo menos dos equilibrios de coexistencia, de los cuales a lo sumo
uno puede ser localmente estable. Estos resultados dependen de la relacion entre la reproduccién de la presa y los efectos
combinados de la depredacién y la competencia por explotacién. La presa se extingue cuando su capacidad reproductiva es
insuficiente frente a estas presiones, mientras que la coexistencia surge cuando la reproduccion es suficientemente alta. El
andlisis también demuestra que no aparecen oscilaciones locales, lo que indica un efecto estabilizador de la competencia por
explotacion. Esta formulacidn ofrece un marco para analizar la depredacién intragremial cuando la dindmica del recurso se
considera constante o secundaria, y sirve como base para extender modelos cldsicos y analizar como el uso asimétrico del
recurso afecta la coexistencia o exclusién de especies.

Palabras Claves:

Dinamica depredador-presa, Depredacién intragremial, Competencia por explotacion, Modelos bidimensionales, Estabilidad
local, Bifurcacion silla—nodo
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PREDATION AND EXPLOITATIVE COMPETITION IN A 2-D SYSTEM

Enith A. Gémez-Hernandez et al.

INTRODUCTION

redation and competition have been extensively stud-
P ied in ecology, in part because they constitute the ba-
sic components of communities Holt and Polis (1997); Bod-
ini (1991). These interactions were mathematically enunci-
ated in the 1920s by Lotka and Volterra. They independently
proposed a model to describe the relationship between two
species sharing the same resource and then shifted their at-
tention from competition to the effects of predation on pop-
ulation growth Smith et al. (1998). Predation has been stud-
ied by considering different functional responses, most no-
tably Holling type I, II, and III Holling (1965); Tian and Xu
(2011); Chan et al. (2017); Sarkar et al. (2020). Competition
has two main approaches: interference and exploitative com-
petition Nguyen-Ngoc and Nguyen-Phuong (2016). Inter-
ference competition occurs when individuals of one species
are equivalent to a certain number of individuals of another
species. Exploitative competition occurs when the use of the
resource by one species reduces the capacity of the environ-
ment to support another species by acting on its carrying ca-
pacity Jensen (1987).

Intraguild predation is an interaction of competition and
predation where two species involved in a predator-prey re-
lationship also compete for a shared resource Arim and Mar-
quet (2004). Generally, three species are involved in math-
ematical models corresponding to predator, prey, and shared
resource. For example, in Kang and Wedekin (2013), they
formulate two models of intraguild predation. One has the
specialized predator and the other generalist. They found that
the model with the generalist predator is more prone to coex-
istence. In Capone et al. (2018), they propose an intraguild
model in which the carrying capacity of the prey and the
predator is proportional to the biotic resource. They estab-
lish different exclusion and coexistence regimes of the popu-
lations. In Sen et al. (2018), they propose a model in which
the predator and the prey compete to remain in the commu-
nity, and they observe two types of coexistence: steady-state
coexistence and oscillatory coexistence.

Intraguild predation is a particular type of omnivory,
which is defined as feeding on more than one trophic level in
the food chain model Sen ef al. (2018). According to Hunter
(2009), omnivores are generalists that evolve in response to a
trade-off between food quality and quantity. A typical exam-
ple of omnivorous animals are ants that consume animal tis-
sue, seeds, and plants Hunter (2009). In relation to intraguild
models of predation mentioned previously an example of an
omnivorous predator, a herbivorous prey and a resource for
which they compete for exploitation can be found in the pe-
riphyton and freshwater amphipods (Crustacea) of the genus
Hyalella. In this case, Hyalella curvispina would be an om-
nivorous predator that feeds on periphyton, but if the algal
food supply is low, H. curvispina consumes Hyalella pseu-
doazteca , which would be an herbivorous prey, since it only
eats algae, so the resource they compete to exploit would cor-
respond to periphyton Casset et al. (2001); Carusela et al.
(2009). Another example, is found in species inhabiting

the Antarctic Ocean. Antartic krill Euphausia superba is
the main food for Antarctic Fur Seals Arctocephalus gazella
and fishes Champsocephalus gunnari, but A. gazella also eat
fishes C. gunnari Doidge and Croxall (1985); Ibafiez (2005).

In this paper, we are interested in developing and ana-
lyzing a mathematical model that maintains the simplicity
of the Lotka—Volterra framework of two ordinary differen-
tial equations, while allowing us to study the population dy-
namics of a predator and a prey competing for the same re-
source. Beyond mathematical convenience, dimensional re-
duction allows for the analytical exploration of ecological
systems in which resource dynamics operate on faster time
scales or remain approximately constant. This approach pre-
serves the fundamental mechanisms of intraguild predation
and exploitative competition, without the need to explicitly
incorporate resource dynamics.

For example, this framework can represent an herbivore
and an omnivore competing for a primary producer. To
achieve this, we include exploitative competition in a two-
dimensional model rather than explicitly modeling a three-
variable system with separate equations for the predator, the
prey, and the shared resource. In our model, the resource for
which predator and prey compete is implicit; therefore, the
equivalent representation in a three-variable formulation cor-
responds to equilibrium at which the resource remains pos-
itive. With this model, we address the following question:
what are the population dynamics of a predator—prey system
subject to exploitative competition?

Our analysis shows that the reduced system captures the
main dynamical outcomes expected in intraguild interac-
tions. The model admits extinction, exclusion, and coexis-
tence states, with at most one coexistence equilibrium be-
ing locally stable. Because the trace of the Jacobian at
any interior equilibrium is always negative, stability depends
solely on the determinant, and no Hopf bifurcations or os-
cillatory coexistence can arise. A saddle—node bifurcation
separates parameter regions where positive coexistence equi-
librium persist from those where coexistence is lost. Eco-
logically, the analysis reveals two contrasting regimes, when
prey reproduction exceeds the predation pressure exerted at
the predator carrying capacity, stable coexistence is possible,
otherwise, the prey is excluded. Asymmetries in resource ex-
ploitation further determine which species dominates at equi-
librium.

THE MODEL

We developed a predator—prey model in which both species
compete for a shared limiting resource. The formulation re-
lies on the following assumptions:

i. The biological system consists of two state variables:
the prey population N; and the predator population N,.
Each population experiences gains and losses deter-
mined by birth, predation, and competition for resource
exploitation.

ii. In the absence of predators, the prey population N; fol-
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lows logistic growth with intrinsic growth rate r; and
carrying capacity k;.

iii. The predator exhibits a generalist feeding strategy.
Thus, even when the focal prey N is absent, the preda-
tor population N, follows logistic growth with intrinsic
rate r, and carrying capacity k».

iv. Because both species exploit the same underlying re-
source, interspecific competition affects their carrying
capacities. Specifically, the effective carrying capacity
of Nj decreases by 1n1N,, where 1 represents the per
capita resource requirement of the predator relative to
the prey’s carrying capacity. Symmetrically, the carry-
ing capacity of N, decreases by 1o/N.

v. Predation follows a Holling type I functional response.
The parameter p denotes the predation efficiency, while
€ represents the conversion efficiency by which con-
sumed prey biomass (pN;) contributes to predator
biomass production (€pNy).

A conceptual representation of the ecological interactions
described by assumptions (i)—(v) is shown in Fig. 1.

Exploitative
competition

M- 2
- e - = h ~
7 ~
L A
Predation/ predator
p N,
Limits carrying
kl capacity k2
Shared
resource
implicity

Figure 1: Conceptual diagram of the predator—prey system with
exploitative competition mediated by a shared resource. The prey
(N1) and the predator (V;) interact through direct predation, while

both species depend on a common resource that is treated
implicitly in the model. Resource availability limits the effective
carrying capacities of both populations, generating indirect
exploitative competition between prey and predator.

Under these assumptions, the dynamics are described by
the system

dN N,
;:l"lN] (1 !

—— | — pN| N
dt k1—771N2> P

1
dN, Ny M

— =N |[1——FF EpN 1N
i r 2( ]Q—T]zN1>+ PIN1IND,

with (N1, N,) confined to the biologically feasible region

k k
Q= {(Nl,N2)eRi:N1 <2 M< '},
n2 m

and all parameters ry,ry,k1,kz,M1, M2, p, € are strictly posi-
tive (see Table 1).

Table 1: Ecological interpretation and units of the model pa-
rameters.

Par. Ecological meaning Units

ri  Intrinsic growth rate of the prey time ™!

rp  Intrinsic growth rate of the time ™!
predator

ki1 Effective carrying capacity of density
the prey

ko,  Effective carrying capacity of density
the predator

p  Predation rate on the prey time ™!

m  Predator mortality rate time ™!

1n1  Strength of exploitative compe- dimensionless
tition exerted by the predator on
the prey

1, Strength of exploitative compe- dimensionless

tition exerted by the prey on the
predator

Theorem 1 All solutions of system (1) initiated in Ri are
uniformly bounded.

Proof Define the auxiliary function
w=¢€N| +N,. 2

Solutions of (1) satisfy

Ny < — and Ny < —. 3)
2 m

Differentiating (2) along trajectories of (1), we obtain

N1 N2 )
R S \'AY ( Q.- -
k1—711N2> ? 2( ky — M2\

( eN? N; )
<rw-—r + ,
ki—mNy ko — 1N,

where r = max{rj,r,}. Using the bounds in (3),

dw eN? N2 eN? N2
<rw-—r k——&—— <rw-—r ——i—? ,
1

dw

— =€rN; (1
i 1 1(

dr ~ ko k
where k = max{€k;,k,}. Since

W2

EN?+ N3 > —,

EN1+Ny=w, 3

we obtain the simplified inequality

Integrating this logistic-type inequality yields

o (5-te)4]
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Thus, limsup,_,,w(t) < k, which implies that every trajec-

tory eventually enters and remains within the compact region
k k

Q= {(Nl,Nz) GRE_ N < 772’ Ny < TTI, ENI+N, < k}.
2 1

This proves uniform boundedness of all solutions. g

Note 1 For Ni(0) > 0 and N»(0) > 0, the positive quadrant
is forward invariant because the right-hand side of system (1)
vanishes on the coordinate axes. Thus population densities
remain non-negative for all t > 0.

RESULTS

From model (1), we obtain four equilibrium points E; repre-
senting different biological situations:

1. The trivial equilibrium Ey = (0,0), extinction of both
species.

2. The axial equilibrium E;, = (k;,0), only the prey at its
carrying capacity.

3. The axial equilibrium E, = (0,k2), only the predator at
its carrying capacity.

4. The interior (coexistence) equilibrium E, = (Nj,N;),
where both species coexist.

To explicitly characterize the coexistence equilibrium E,,
we assume N; # 0 and NV, # 0 and solve

N;
1_7 — = 4
ri ( kl _ T]1N2> pN2 0, ( )

N,
rmn|ll—— ) +¢epN; =0. 5
2( kzﬂzM) P ©)

From (4) we obtain

Ny = (r1 — pN2) (k1 — 771N2)’ ©)

r

and substituting this expression into (5) yields a quartic poly-
nomial in N, of the form

baN3 +b3N; +baN3 + b N2+ by = 0,
where

by =€ep’Niny,

by = — (2ep*mimaki +2ep*nimar),

by = ep’ ki +4ep*Mimakiry + EpNinari — ep°Mikary
+pmmnarir,

by = —2ep*mokir) — 2epnimakir} +ep*kikor
+epmikart — piaokirira — MMarira +riry,

by = epmakir? — epkikar? +Makirirs —karirs.

We note that by > 0 and b3 < 0, so the polynomial exhibits
at least one sign change. By Descartes’ rule of signs, it has
at least one positive root. Therefore, there exists at least one
interior equilibrium E, with ecological meaning.

LOCAL STABILITY OF BOUNDARY EQUILIBRIA

To analyze the stability of the equilibria Ey, with i € {1,2},
we first compute the Jacobian matrix associated with the
linearization of system (1) at a generic equilibrium point
E = (Ny,N,), which is denoted by J(E)

2N, ) rimN?
n(1- 20 N opy, o OMEL Ly,
( ki — MmN, (ki —mNp)?
rMaN3 ( 2N, >
PR N, (1 2 ) e
(g —mNy 2 P ky — M2y P

Evaluating at the trivial equilibrium Ep = (0,0), we obtain

J(Eo)—<%1 g),

whose eigenvalues are A = r; and A, = r,. Since both are
positive, Ey is unstable.
At the axial equilibrium Ey, = (k1,0) we have

r —pky —
J(Ekl):< Orl PK1 771’”1>7

Epki+nr

with eigenvalues A; = —r and A, = epky +r; > 0, s0 Ey, is
also unstable.

Proposition 1 (Local stability of the predator-only equi-
librium) The axial equilibrium Ey, = (0,k2) satisfies the fol-
lowing:

o [t is locally asymptotically stable if r| < pka,

e [t is non-hyperbolic if ri = pkj,

e [t is unstable if ri > pkj.

Proof The Jacobian at E, is

ry — pkz 0
J(E = )
(Eie) <8Pk2—7721’2 —r2>
whose eigenvalues are
M =ry — pky, A =—r <0.

Thus the sign of A; determines the stability of Ej,, giving the
three cases above. |

Ecologically, the condition r; < pk; indicates that the pre-
dation pressure exerted by the predator at its carrying ca-
pacity is sufficiently strong to prevent the prey from invad-
ing the system. In this case, the predator-only equilibrium
persists because prey growth cannot compensate for losses
due to predation. Conversely, when r; > pka, the prey has a
net positive growth even in the presence of maximal preda-
tor density, allowing it to invade and rendering the predator-
only state unstable. The case r; = pk, represents an invasion
threshold separating these two ecological regimes.
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LOCAL STABILITY OF THE COEXISTENCE EQUILIB-
RIUM

The interior equilibrium E, of system (1) represents coex-
istence of both species. Although its coordinates cannot be
expressed in closed form, its local stability properties can be
analyzed through the Jacobian matrix, complemented by nu-
merical exploration of the parameter space.

Proposition 2 (Sign of the trace) Let E,. = (N,N;) be any
interior equilibrium in the feasible region, i.e. Ny > 0, Ny >
0, kf — N2 > 0 and ko — aNy > 0. Then the trace of the
Jacobian at E, satisfies

riN N,

- <0.
ki—mNy ko — 1N,

trJ(E,) = —

Proof Evaluating the Jacobian at E, gives

oy Nl(_ rimN —P)
ki —miN, (k1 —mN2)?
Ny (ep— r212N2 M
(ko —m2N1)? ky — MmN

All quantities r;, N;, and the denominators (k; — 1;N;) are
positive in the feasible region, hence both diagonal entries
are negative and the trace is strictly negative. g

Note 2 (Absence of Hopf bifurcations) Because trJ(E,) is
strictly negative for all feasible interior equilibrium, the real
part of the eigenvalues can never vanish while detJ(E,) >
0. Therefore, no Hopf bifurcation can occur at an interior
equilibrium of system (1), and limit cycles cannot originate
locally from E,.

Theorem 2 Let E. = (N,N) be any interior equilibrium of
system (1) in the feasible region. If detJ(E,) > 0, then E, is
locally asymptotically stable.

Proof Since trJ(E,) < 0 for all feasible interior equilibrium
(Proposition 2), the condition detJ(E.) > 0 implies that both
eigenvalues of J(E,) have negative real part. Thus, E, is
locally asymptotically stable. (|

Note 3 Let E,. = (N1,N,) be an interior equilibrium of sys-
tem (1) in the feasible region and define

A=k — NN, B =k, —mNy.

Then the determinant of the Jacobian at E, can be written as

rir 2 rimN;
detJ(E,) = Ni1N> | — —_—
etJ(E,) N2 |~ HepTHep—p

(N
_praM2No rinimeNiN,

B2 A2B? ’

where A > 0 and B > 0 in the feasible region.

The analysis above shows that interior equilibrium may be
either locally asymptotically stable or of saddle type, depend-
ing solely on the sign of detJ(E,). Along the curve where
detJ(E,) = 0, the equilibrium becomes non-hyperbolic, and
numerical continuation in the (1;,1,)-plane (Figs. 2-4) re-
veals that this curve corresponds to the collision and disap-
pearance of two interior equilibria. This behaviour is charac-
teristic of a saddle—node bifurcation. To formalize this obser-
vation, and connect the numerical bifurcation diagram with
the underlying mathematical structure of system (1), we state
the following theorem.

Theorem 3 (Saddle-node bifurcation of interior equilib-
rium) Let 0 = (11,M2) denote the pair of exploitation pa-
rameters, and consider system (1) as a one-parameter family
with respect to 1My, keeping all remaining parameters fixed.
Assume that there exist { and an interior equilibrium
E* = (N{,N3) in the feasible region such that:
(HI) F(E*,n{) =0, where F = (F\,F,) is the right-hand side
of system (1);

(H2) detJ(E*,n{)=0andtrJ(E*,n}) <0, so that J(E*,n})
has a simple zero eigenvalue and one strictly negative
eigenvalue;

(H3) Letv and w be the right and left eigenvectors associated
with the zero eigenvalue. Then the nondegeneracy and
transversality conditions

WTFT’I (E*7 Th*) 7& Oa
hold.

wTDzF(E*,nf)[v,v] #0

Then system (1) undergoes a generic saddle—node bifurca-
tion of interior equilibrium at (E*,nf). For n on one side
of Ny there exist exactly two interior equilibria (one stable
and one saddle), whereas for 1y on the other side no interior
equilibria exist.

Proof Under (H1) and (H2), the linearization J(E*, n}) has
a simple zero eigenvalue and a negative eigenvalue, so the
center manifold is one-dimensional. Conditions (H3) en-
sure nondegeneracy of the unfolding. Standard saddle-node
theory (e.g., Sotomayor’s theorem; Kuznetsov ez al. (1998);
Guckenheimer and Holmes (2013)) implies that the reduced
dynamics on the center manifold is locally equivalent to

z=a(m —n7)+ B2+ 0(j2 +m —nyI2]),

with af8 # 0. This is the normal form of a saddle-node bi-
furcation, yielding the stated conclusions. ]

In summary, interior equilibria in system (1) cannot gener-
ate oscillatory coexistence through a Hopf mechanism, since
their Jacobian trace is always strictly negative. Local stabil-
ity is determined solely by the sign of the determinant: equi-
librium with detJ(E,) > 0 are locally asymptotically stable,
whereas those with detJ(E,) < 0 are saddles. The transition
between these regimes occurs along the saddle-node curve
detJ(E,) = 0, which explains the appearance and disappear-
ance of coexistence states observed in the (11, 1,) parameter
space.
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COEXISTENCE-FAVOURING REGIME: r| > pky

We now investigate how the qualitative dynamics of sys-
tem (1) vary across the (1;,1;) parameter space. These
parameters control how strongly each species reduces the
other’s effective carrying capacity, and therefore the (11,1>)-
plane captures how asymmetries in resource exploitation
govern coexistence, exclusion, and the emergence of saddle-
type interior equilibrium.

First, consider the case in which the exclusion equilibrium
(0,k7) is unstable, i.e. r; > pky, a condition that favours the
existence of a stable coexistence equilibrium.

Wefixri=1.2, r=0.6, k=200, k=100, p=
0.01, & =0.1, and treat n; and 1, as bifurcation parame-
ters. In the (1;,M2)-plane we distinguish three regions in
which the system displays qualitatively different dynamics

(Fig. 2(a)).

(2) (b) I
2
100
15 80
II1
60
2 1 N.
N2
SN 11 40
05
20
I T
0 0 £n
0 05 1 15 2 L0 50 100 150 200
(c) IT m (d) 111 M
100 100
N
80 B 80
60 60
N, N,
40 40
By
20 20
0 0
0 50 100 150 0 20 40 60 80 100
N N

Figure 2: Potential dynamics of model (1). (a) Bifurcation
structure in the (11, M2)-plane. The red line 7' marks the loss of
feasibility of E;, and the grey curve SN denotes the saddle—node
locus where two interior equilibria collide and disappear.
Regions I-III correspond to qualitatively distinct dynamical
regimes. Parameter values: r| = 1.2, r, = 0.6, k; = 200, k, = 100,
p =0.01, e =0.1. (b)—(d) Phase portraits illustrating the dynamics
in regions L, Il and III for (n;,n2) = (1.2,0.4), (1.2,0.6) and
(1.2,0.9), respectively. In region I, a single stable coexistence
equilibrium E, attracts all trajectories. In region II, the stable
coexistence equilibrium coexists with a saddle E,. In region III,
both interior equilibria are lost and coexistence is no longer
possible.

We begin our description in region III, where the system
admits no interior equilibria. In this region, the feasible
quadrant contains no stable equilibrium, and coexistence of
both species is not possible (Fig. 2(d)).

Crossing the gray curve SN from region III into region II
generates two interior equilibria through a saddle-node bi-
furcation: a locally asymptotically stable equilibrium E; and
a saddle equilibrium Ej (Fig. 2(c)). Ecologically, E| repre-
sents a feasible coexistence state in which both species per-

sist, whereas E, is unstable and therefore biologically irrele-
vant.

The red curve T marks the feasibility boundary: the axial
equilibrium Ej, becomes unfeasible when Ny < k> /M2, and
the interior saddle E also turns unfeasible as one component
becomes negative. Above T, neither Ey, nor E; is feasible,
whereas below it both lie in the feasible quadrant. Therefore,
in region I the system admits four equilibria (Eo, Ey,, Ej,,
and E;). Among them, E is the unique interior equilibrium
and is locally asymptotically stable (Fig. 2(b)), correspond-
ing biologically to a regime of robust coexistence in which
both species persist despite predation pressure and competi-
tion for a shared resource.

(a)
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0 0.5 1 1.5
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2
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[
a
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(d) Il.a Time (e) I1.b Time
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100 100 — Predator|
80 80
2 2
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0 20 40 60 80 100 0 20 40 60 80 100
Time Time

Figure 3: Coexistence regions in the (11, 1,) parameter space. (a)
Bifurcation diagram showing how the black line 17 = 1, intersects
four qualitatively distinct subregions (I.a, L.b, Il.a and IL.b). The
red line marks the feasibility boundary for Ey, , and the gray curves
correspond to saddle—node collisions of interior equilibrium.
Panels (b)—(e) display the temporal dynamics of prey and predator
densities at representative points in each subregion: (b)
(n1,M2) = (0.1,0.3) (region La), (c) (0.4,0.4) (region Lb), (d)
(0.52,0.55) (region I.a), and (e) (1.2,0.55) (region IL.b). These
simulations illustrate how asymmetries in resource exploitation
govern whether prey or predator dominates at equilibrium. All
fixed parameter values are the same as in Fig. 2.
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Since regions I and II both admit a stable coexistence equi-
librium E, = E|, we next explore how equilibrium densities
change across these regions. To this end, we consider points
along the line 17; = 72, which partitions the coexistence do-
main into four subregions (Fig. 3(a)).

In subregions I.a and Lb, the predator density always ex-
ceeds the prey density at equilibrium. In region l.a, where
Mn2 > My, the predator surplus over the prey is moderate
(Fig. 3(b)), whereas in region L.b, where 11 > 1, the differ-
ence between predator and prey densities is larger (Fig. 3(c)).
In contrast, in region Il.a the prey density exceeds the preda-
tor density (Fig. 3(d)), while in region IL.b the predator again
dominates (Fig. 3(e)). In summary, when 1; > 1, the preda-
tor population tends to exceed the prey population. When
11 < M2, the prey can dominate numerically, or the species’
densities remain relatively similar.

REGIME ALLOWING PREDATOR EXCLUSION OF THE
PREY: 1| < pk;

We now consider the second case, in which the exclu-
sion equilibrium (0,k;) is locally stable. We fix r| =
1.2, rn =06, k =200, k=130, p=0.01, &=
0.1. In Fig. 4(a), the curves in the (11, M2)-plane divide the
parameter space into four open regions, labeled I-IV, with
qualitatively distinct dynamics.

(2) (b) 1

2 150
E,
15
w 111 100
1 N
50
05
1 11 .
0 0 Ey,
0 0.5 1 15 2 0 50 100 150 200

m Ny

Figure 4: (a) Regions in the (1,1, )-parameter space indicating
where exclusion equilibrium and interior equilibrium exist. The
horizontal and vertical boundaries separate four qualitatively
distinct dynamical regimes. Parameter values: r; = 1.2, r, = 0.6,
k1 =200, k; =130, p =0.01, € = 0.1. (b) Phase portrait of
model (1) in region I, where the predator-only equilibrium (0, ;)
is globally attracting within the positive quadrant, leading to
extinction of the prey.

In region I there is no positive coexistence equilibrium;
hence coexistence between both species is not possible. Nu-
merical simulations indicate that (0, ;) is globally attracting
within the positive quadrant (Fig. 4(b)): for any positive ini-
tial condition the prey population goes extinct, whereas the
predator population converges to its carrying capacity k.

In region II the only boundary equilibrium is (k;,0), which
is always unstable, and no positive coexistence equilibrium
with ecological meaning exists. In region III there are no
exclusion equilibrium and at least one interior equilibrium
in the feasible quadrant, which is of saddle type. Finally,
in region IV the only exclusion equilibrium is (0,k;), and

there exists at least one interior equilibrium in the feasible
quadrant, which is again of saddle type. In both regions III
and IV, trajectories approach either the predator-only state
or diverge away from the unstable coexistence equilibrium,
depending on initial conditions.

When r| < pks, predators can suppress the prey to extinc-
tion, preventing invasion. In contrast, if r| > pkj, predators
are unable to exclude the prey, allowing a stable coexistence
equilibrium to emerge. These two conditions divide the pa-
rameter space into qualitatively distinct dynamical regimes.

DISCUSSION

In this paper, we examined the dynamics of a simple preda-
tor—prey system in which both species exploit a shared
resource. The model preserves the simplicity of the
Lotka—Volterra framework while incorporating exploitative
competition in an implicit form. This structure is particu-
larly useful for studying intraguild-like interactions when the
shared resource remains at a steady density, as assumed in
classical ecological theory (Schaffer, 1981). This perspective
facilitates ecological interpretation and enables a transparent
classification of coexistence and exclusion regimes.

The results show that the exclusion equilibrium Ej, be-
comes locally stable when the reproductive potential of the
prey is lower than the combined effects of predation and
shared-resource competition, that is, when r; < pk; and
M < ki /kz. Under these conditions, the prey declines to low
density or extinction while the predator approaches its car-
rying capacity. This outcome is ecologically plausible, since
predation imposes additional mortality on the prey popula-
tion (Okuyama and Ruyle, 2003). An illustrative example
is the Argentine ant, a globally invasive species that com-
bines exploitative competition with direct predation on native
ants, ultimately driving local extinctions (Human and Gor-
don, 1996; Damas-Moreira et al., 2020). Our model captures
this mechanism: an invasive species with both competitive
and predatory advantages, often associated with higher re-
productive potential (Pockl, 2009; Jines et al., 2015), can
exclude a native counterpart.

Conversely, coexistence requires the opposite inequality,
r1 > pkp, although this condition alone does not guaran-
tee the existence of a positive equilibrium. For some pa-
rameter combinations, no feasible interior equilibrium ex-
ists (Fig. 2(d)), consistent with theoretical predictions that
prey persistence under omnivory may be rare (Holt and Po-
lis, 1997; Diehl and Feifel, 2000; Mylius et al., 2001; Kfivan
and Diehl, 2005). Nevertheless, the model also identifies pa-
rameter regions where coexistence does occur (regions I and
I in Fig. 2(a)), supporting empirical observations that omni-
vores and their prey often persist together in natural systems
(HilleRisLambers et al., 2006; Amarasekare, 2008). When
the interior equilibrium E, exists, it may be locally asymp-
totically stable, thereby ensuring coexistence for a range of
biologically relevant initial conditions (Fig. 2(b)).

The relative strength of resource exploitation by each
species further determines their long-term abundances. As
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shown in Fig. 3(b) to Fig. 3(e), the ratio between 71; and
M, controls which species is numerically dominant at equi-
librium. When 11 > 7, meaning the prey consumes more
resource per capita or exploits it more intensely, the predator
eventually outnumbers the prey. When 11 < 1>, the prey
may numerically exceed or match the predator. This pat-
tern resembles coexistence mechanisms observed in marine
systems where sessile and mobile species interact through
predation while simultaneously competing for oxygen as a
limiting resource (Ferguson et al., 2013). Differential ex-
ploitation of the shared resource may therefore facilitate co-
existence even in the presence of strong antagonistic inter-
actions. From an empirical perspective, the parameters 1
and mp—which quantify the intensity of exploitative com-
petition mediated by the shared resource—could be inferred
through exclusion experiments or indirectly estimated from
consumption rates and measurements of resource availabil-
ity.

Finally, the model predicts the absence of population cy-
cles for all parameter combinations. Although predator—prey
interactions can generate oscillatory dynamics (Erbach et al.,
2013), the addition of exploitative competition suppresses
such oscillations by imposing mutually negative density ef-
fects that stabilize the system (Petren and Case, 1996). An-
other important factor underlying this result is the assump-
tion of a linear (type I) functional response, which is adopted
to focus on the dynamical effects of exploitative competi-
tion within a reduced and analytically tractable framework.
Extending this work to incorporate nonlinear functional re-
sponses, such as type II or type III, would be a natural next
step, as these can enable limit cycles and modify the con-
ditions under which coexistence is possible (Fussmann and
Blasius, 2005; Abrams and Fung, 2010).
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