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RESUMEN

Este artículo presenta un análisis dinámico y estructural del paisaje de atractores en dos redes reguladoras de genes vinculadas
al desarrollo embrionario de erizos de mar: el endodermo y el esqueleto larval. Se utilizan modelos booleanos para simular la
dinámica y se generan los diagramas de transición correspondientes. A partir de muestras aleatorias de condiciones iniciales,
se identifican atractores de periodo dos en todos los casos. Se examinan la profundidad de las trayectorias, el tamaño de las
cuencas de atracción y la estructura de comunidades en las componentes atractoras. Se observa que los atractores dominantes
concentran la mayor parte de las trayectorias y presentan comunidades más extensas, mientras que los menos frecuentes
están asociados a trayectorias más simples. La elevada proporción de interacciones activadoras y módulos de interacción
en ambas redes sugiere una organización topológica que favorece la convergencia hacia estados cíclicos estables. Estos
resultados apoyan la hipótesis de que la estructura de las redes génicas está moldeada por presiones evolutivas que promueven
comportamientos dinámicos robustos y funcionales durante el desarrollo embrionario.

Palabras Claves:

Redes reguladoras de genes, dinámica booleana, atractores periódicos, comunidades dinámicas

ABSTRACT

This article presents a dynamic and structural analysis of the attractor landscape in two gene regulatory networks involved in
sea urchin embryonic development: the endoderm and the larval skeleton. Boolean models are used to simulate the system’s
dynamics and to generate the corresponding transition diagrams. Based on random samples of initial conditions, all iden-
tified attractors exhibit a period-two cyclic behavior. The study examines trajectory depth, basin sizes, and the community
structure within attractor components. Dominant attractors concentrate most trajectories and form larger communities, while
less frequent ones are associated with simpler, more direct dynamics. The high proportion of activating interactions and the
presence of multiple interaction modules suggest a topological organization that promotes convergence to stable cyclic states.
These findings support the hypothesis that gene network structures are shaped by evolutionary pressures to ensure robust and
functional dynamics during embryonic development.

Keywords:

Gene regulatory networks, Boolean dynamics, periodic attractors, dynamic communities
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PRELIMINARES

TEORÍA DE GRAFOS

En el contexto de este artículo, nos referimos a las redes
como un grafo dirigido (o digrafo) denotado por G = (V,A),
donde V representa el conjunto de vértices y A el conjunto
de aristas dirigidas. Una arista dirigida se define como un par
ordenado (u,v), con u,v ∈ V . Todas las redes consideradas
cumplen la condición de que tanto V como A son conjuntos
finitos.

Existen dos conjuntos importantes asociados a un vértice
v: el conjunto de entrada de v, denotado por I(v), y el con-
junto de salida de v, denotado por O(v). Estos conjuntos se
definen de la siguiente manera: I(v) := {u ∈ V : (u,v) ∈ A}
y O(v) := {u ∈V : (v,u) ∈ A}.

El grado de entrada y el grado de salida de un vértice
v ∈ V en un dígrafo se definen como el número de aristas
que llegan a v y el número de aristas que salen de v,
respectivamente. Estos se denotan por |I(v)| y |O(v)|.

Un camino dirigido en G desde u ∈ V hasta v ∈ V es una
secuencia de vértices tal que cada par consecutivo de vértices
u = v0 → v1 → ··· → vℓ = v forma una arista dirigida en A.
En este caso, ℓ representa la longitud del camino dirigido.
Por otro lado, un camino no dirigido entre los vértices u ∈V
y v ∈ V es una secuencia de vértices, como se describió
anteriormente, con la diferencia de que cada par consecutivo
de vértices forma una arista dirigida o su inverso en A.

En el dígrafo G = (V,A), una componente débilmente
conexa es un conjunto maximal C ⊂ V tal que existe un
camino no dirigido entre cada par u,v ∈C, considerando las
direcciones de las aristas.

Consideremos un poliárbol T = (V,A). Las raíces del po-
liárbol constituyen el conjunto de vértices R = {r1, . . . ,rk} ⊂
V , donde el conjunto de entrada es vacío, es decir, I(v) = /0
para todo v ∈ R. Por otro lado, las hojas de T son el conjunto
de vértices L ⊂ V cuyo conjunto de salida es vacío, es de-
cir, O(v) = /0 para todo v ∈ L. Las aristas de este árbol están
dirigidas desde las raíces hacia las hojas.

DINÁMICA DE LAS REDES

Una red reguladora de genes (GRN, por sus siglas en
inglés) puede entenderse como un sistema dinámico forma-
do por múltiples unidades interconectadas, cuya evolución
depende de la estructura de las interacciones entre ellas,
tal como se expone en de Jong and Lima (2005). En este
marco, dichas unidades corresponden a productos génicos
y se describen mediante valores numéricos que varían en el
tiempo, los cuales representan sus concentraciones relativas,
siguiendo lo señalado en Luna et al. (2013).

El tiempo se modela como una variable discreta, y el siste-

ma se describe mediante una red de mapas acoplados por tra-
mos afines, siguiendo el enfoque de Luna and Ugalde (2008).
La evolución global del sistema se observa en los instantes
t0 < t1 < · · · < tn < · · ·, y su estado en un momento arbitra-
rio t puede representarse mediante un vector N-dimensional,
donde |V | = N y cada componente xi

t ∈ R indica el nivel de
actividad de la i-ésima unidad en ese instante. La dinámica
del sistema define su configuración futura a partir del esta-
do inmediatamente anterior, mediante la siguiente regla de
actualización:

xt+1
j = α j xt

j +D j
(
xt

k : vk ∈ I (v j)
)
,

donde el parámetro α j ∈ [0,1] representa la tasa de degra-
dación asociada al vértice v j, y D j es una función que depen-
de de los niveles de actividad de los vértices que conforman
el conjunto de entradas de v j. Adoptamos α j = 1 con el fin
de simplificar la descripción de la dinámica y enfocar el aná-
lisis en el papel que desempeñan la topología de la red y los
módulos de interacción, asumiendo una evolución sin degra-
dación explícita. La función D j es una función dependiente
de los niveles de actividad de los vértices que integran el con-
junto de entradas de v j. A las componentes funcionales que
determinan estas interacciones las denominamos módulos de
interacción. Hay tres casos principales:

1. Entradas individuales: Una única arista u → v es sufi-
ciente para activar v:

xt+1
v = xt

u

donde xu ∈ {0,1} es la variable que indica si u está ac-
tivo.

2. Entradas combinatorias: Varias aristas deben concurrir
simultáneamente para generar la señal. Un ejemplo de
su representación se observa mediante el producto de
sus variables:

xt+1
v = ∏

u∈Iv

xt
u.

3. Autoregulaciones: Un vértice v puede regularse a sí mis-
mo mediante un lazo v → v. Se incluye su propia varia-
ble xv en la fórmula, por ejemplo:

xt+1
v = xt

v · ∏
u∈Iv\{v}

xt
u.

Así, la activación de v depende también de su estado
previo.

La evolución temporal de una red reguladora puede repre-
sentarse mediante un dígrafo que funciona como su diagrama
de transición, de acuerdo con el enfoque descrito en España
et al. (2025). En este dígrafo, cada vértice corresponde a una
configuración posible del sistema en un instante t ∈ N, es
decir, a un vector (xt

1,x
t
2, . . . ,x

t
N) ∈ {0,1}N . Los caminos de

este grafo describen las trayectorias dinámicas que emergen
a partir de una condición inicial (x0

1,x
0
2, . . . ,x

0
N) ∈ {0,1}N , y

permiten visualizar las secuencias de estados que el sistema
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puede alcanzar bajo su dinámica. Para los fines de este
estudio, adoptamos la convención de que el valor 0 indica
que un gen se encuentra desactivado, mientras que el valor 1
representa su activación.

En la Figura 1 se presenta un ejemplo de la dinámica
que induce una red reguladora de genes. En (a), se muestra
una red reguladora de genes ficticia con estructura de
poliárbol, compuesta por cinco vértices (genes) y seis aristas
que representan interacciones de activación e inhibición,
indicadas mediante flechas convencionales y flechas planas,
respectivamente. En (b), se muestra la función booleana
derivada de su topología, en la cual se asume que los
genes raíz permanecen constantemente activos, mientras
que el conjunto de hojas está conformado por un único
representante. En (c), se ilustran dos trayectorias dinámicas
generadas a partir de diferentes condiciones iniciales 00000
y 10011. En ambos casos, la evolución del sistema conduce
eventualmente a un estado estable, el punto fijo 11011. Los
estados estables (que incluyen tanto puntos fijos como pun-
tos periódicos), denominados patrones de actividad génica
o GAPs (por sus siglas en inglés, Gene Activity Patterns,
según lo señalado en Espinosa-Soto (2018)), corresponden
al fenotipo funcional de la red, reflejando su especialización
en una tarea regulatoria particular, según Davidson et al.
(2002). Finalmente en (d), se muestra el diagrama de
transición asociado a la red, el cual representa todas las
trayectorias posibles derivadas de las 25, configuraciones
iniciales binarias del sistema. Cada vértice en el grafo
está etiquetado con el valor decimal correspondiente a su
configuración binaria (por ejemplo, la etiqueta 0 corresponde
a la condición inicial 00000 y la etiqueta 31 corresponde a
11111), y las aristas indican las transiciones dictadas por
la dinámica booleana. Como se aprecia, este dígrafo es
igualmente un poliárbol en el que, salvo cuatro vértices,
todos son raíces, y no existen hojas, pues cada uno de los
vértices restantes tiene al menos una arista de salida.

En las redes analizadas en este trabajo, el espacio de es-
tados crece exponencialmente con el número de genes (del
orden de 234, es decir, más de 17 mil millones de combinacio-
nes posibles), por lo que una exploración exhaustiva de todas
las trayectorias actualmente es para nosotros computacional-
mente inviable. En consecuencia, los atractores se determina-
ron de manera analítica a partir de las funciones booleanas de
cada red, identificando todos los ciclos accesibles. El modelo
booleano caracteriza de forma completa el paisaje de atracto-
res definido por la estructura de la red; no obstante, estudios
futuros podrían considerar variantes estocásticas o continuas
para explorar sensibilidad paramétrica y transitorios raros.

METODOLOGÍA

En este artículo se analizan dos redes reguladoras de ge-
nes extraídas de sistemas modelo ampliamente utilizados
en biología del desarrollo, por ejemplo, véanse los trabajos
de: Davidson (2010); Arda et al. (2013); Combs and Yutzey

(a) Red reguladora de genes (b) Función booleana asociada

(c) Órbitas de dos condiciones
iniciales

(d) Diagrama de transición de la red

Figura 1: Ejemplo de la dinámica de una red reguladora de genes.
Se muestra una red reguladora de genes, su función booleana

asociada, dos trayectorias dinámicas a partir de las condiciones
iniciales: 00000 y 10011. Finalmente, se muestra el diagrama de

transición de la red.

(2009); Kueh and Rothenberg (2012); Stathopoulos and Le-
vine (2005). Estas redes corresponden a los siguientes orga-
nismos:

1. Endodermo del erizo de mar, extraída de Garfield et al.
(2013).

2. Esqueleto del erizo púrpura del Pacífico, extraída de Li
and Davidson (2009).

Los erizos de mar son organismos modelo amplia-
mente utilizados en biología del desarrollo debido a su
embriogénesis externa, simetría radial y redes génicas
bien caracterizadas. El endodermo, una de las tres capas
germinativas del embrión que da origen al intestino pri-
mitivo y a otros órganos internos, ha sido particularmente
estudiado en especies como Strongylocentrotus purpuratus.
En estos organismos, el endodermo se origina a partir de
dos poblaciones celulares vegetales denominadas Veg1 y
Veg2, cuya especificación está regulada por una red génica
altamente conservada que responde a señales de las vías
Wnt/β -catenina y Delta/Notch. Este sistema constituye
un modelo ideal para investigar los mecanismos de espe-
cificación del destino celular y la integración de señales
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intercelulares durante la formación de estructuras internas,
proporcionando así información clave sobre la evolución de
los programas de desarrollo en deuteróstomos, según Peter
and Davidson (2010).

Esqueleto del erizo púrpura del Pacífico. Strongylocen-
trotus purpuratus, el erizo púrpura del Pacífico, constituye
un modelo fundamental para el estudio de la formación
del esqueleto larval. Esta estructura está compuesta por
espículas calcáreas que se originan a partir de células
mesenquimáticas primarias (PMC), las cuales migran, se
fusionan en un sincitio y secretan una matriz orgánica que
sirve como andamiaje para la cristalización de calcita. La
especificación de las PMC está regulada por una red génica
que incluye factores exclusivos del linaje de equinoideos,
como pmar1 y alx1, y depende de señales inductivas
provenientes del ectodermo, entre las que destaca la vía de
señalización mediada por VEGF. Este sistema constituye un
ejemplo paradigmático de cómo los programas genéticos
orquestan procesos morfogenéticos y proporciona un marco
para investigar la evolución de estructuras biomineralizadas
en metazoos, según Rafiq et al. (2012).

En ambas redes se muestra un fragmento de su red
reguladora de genes en el desarrollo embrionario de los
organismos correspondientes.

Estas redes están compuestas como se indica en la Tabla 1.
Por el número de vértices que conforman estas redes, la
cantidad total de condiciones iniciales que conforman el
diagrama de transición es, por lo menos, del orden de 1010.
Para fines analíticos, definimos una muestra aleatoria de
condiciones iniciales de un millón para la primera red y
diez millones para la segunda. Dichas muestras son esta-
dísticamente representativas, ya que garantizan un intervalo
de confianza del 95% con un margen de error máximo de
±0,098% para la primera red y ±0,031% para la segunda,
asumiendo la peor variabilidad posible en proporciones
(p = 0,5). Estas condiciones aseguran una alta fiabilidad en
las estimaciones de participación y profundidad presentadas
en los análisis por presentar.

Como se puede observar, ambas redes tienen una
dominancia fuerte para el número de activaciones, que
corresponden a más de un 80%, una tasa de autorregula-
ciones baja (menor al 10%) y una cantidad de módulos de
interacción mayor al 50%. Esto da indicios de la estabilidad
de los atractores considerando la dinámica booleana que
aquí planteamos.

En este artículo se presenta un análisis estadístico del pai-
saje de atractores de los diagramas de transición de dos redes
reguladoras de genes, basado en el tamaño de las cuencas
y la distribución de las longitudes de los caminos. Para el
análisis de las redes reguladoras y sus respectivos diagramas
de transición, se utilizaron los programas Mathematica 14 y
Python 3.0, junto con las bibliotecas pandas, collections,

networkx y matplotlib.pyplot. Además, la visualización
de los datos se realizó con CorelDRAW Graphics Suite 2023.

RESULTADOS

La estructura de los diagramas de transición que resultan
de aplicar la dinámica a las redes reguladoras de genes del
Endodermo del erizo de mar y de Esqueleto del erizo púr-
pura del Pacífico arroja que su comportamiento asintótico
siempre termina en varios ciclos atractores que siempre son
de tamaño 2, estos suelen representar patrones de expresión
génica oscilatorios o alternantes. Esto puede indicar que
algunos genes pueden estar encendiéndose y apagándose
representando mecanismos de retroalimentación positiva
o negativa, como explica Tian et al. (2009), o asociarse a
dos estados funcionales recurrentes, como por ejemplo una
respuesta a un estímulo encendido o apagado.

Endodermo del erizo de mar

El diagrama de transición de la red reguladora de genes del
Endodermo del erizo de mar tiene dos componentes débil-
mente conexas, cuyos ciclos atractores, son de periodicidad
dos, y se muestran a continuación:

1. Primer ciclo atractor:

1,1, . . . ,1︸ ︷︷ ︸
17

, 0,0, 1,1, . . . ,1︸ ︷︷ ︸
15

.

1, . . . ,1︸ ︷︷ ︸
17

, 0,0, 1, 1, 0,0,1, . . . ,1︸ ︷︷ ︸
5

, 0,1, . . . ,1︸ ︷︷ ︸
5

.

2. Segundo ciclo atractor:

1, . . . ,1︸ ︷︷ ︸
17

, 0,0, 1, 1, 1, 0, 1, . . . ,1︸ ︷︷ ︸
11

.

1, . . . ,1︸ ︷︷ ︸
17

, 0,0, 1, 1, 0, 1, . . . ,1︸ ︷︷ ︸
12

.

A pesar de que la dimensión de esta red es de 34, la
dinámica resultó ser sencilla. A continuación en la Figura 2
se muestra un resumen de la dinámica de su diagrama de
transición. En el cual, el primer ciclo atractor (que por
simplicidad escribiremos como Atractor 1) atrae al 50% de
las condiciones iniciales en la muestra aleatoria que utiliza-
mos. Mientras que el segundo ciclo atractor (o simplemente
Atractor 2), atrae a la otra mitad de las condiciones iniciales.

Además, la profundidad ℓ de esta red es bastante pequeña.
El camino más largo detectado en el diagrama de transición
tiene longitud de 3. Esto puede deberse a la gran cantidad
de activaciones que tiene la red subyacente (recordemos que
es de 85.5%). Un muy pequeño porcentaje de condiciones
iniciales, son las que llegan al atractor en un solo paso, lo
que indica que la dinámica transitoria no es trivial, aunque
solo haya que pasar por uno o dos estados intermedios antes
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Red reguladora de genes Vértices Aristas Activaciones Inhibiciones Hojas Raíces Autorregulaciones Módulos de interacción
Cant. % Cant. % Cant. % Cant. % Cant. % Cant. %

Endodermo del erizo de mar 34 83 71 85.5 12 14.5 15 44.1 5 14.7 5 6.0 44 53.0
Esqueleto del erizo púrpura del Pacífico 35 106 87 82.1 19 17.9 11 31.4 5 14.3 8 7.5 88 83.0

Tabla 1: Resumen comparativo de propiedades estructurales de dos redes reguladoras de genes. Se incluyen número de
vértices, aristas, activaciones, inhibiciones, hojas, raíces, autorregulaciones y módulos de interacción, expresados en
cantidad absoluta y porcentaje.

Figura 2: Estadística de los atractores del Endodermo del erizo de
mar.

de caer en un comportamiento estable, y en este caso, cíclico.

A partir de la muestra, se construyeron las funciones
de probabilidad de que una condición inicial le tome n
número de pasos para llegar al ciclo atractor final que le
corresponde, en donde se obtuvo que las funciones son
unimodales, con máximo en el número de pasos igual a
dos y que coinciden con un error cuadrático medio de 0.82%.

Asimismo, al examinar las componentes de los ciclos
atractores, observamos que los bloques de 1’s predominan
claramente al principio (con 17 componentes) y al final (con
más de 10 componentes, salvo en uno de los casos). Aun-
que este patrón puede obedecer a la elevada cantidad de ac-
tivaciones de la red, también muestra que la diversidad del
diagrama de transición se manifiesta principalmente en los
tramos centrales de cada condición inicial.

Esqueleto del erizo púrpura del Pacífico

El diagrama de transición de la red reguladora de genes
del Esqueleto del erizo púrpura del Pacífico tiene siete com-
ponentes débilmente conexas, cuyos ciclos atractores, son de
periodicidad dos, y se muestran a continuación:

1. Primer ciclo atractor:

1, . . . ,1︸ ︷︷ ︸
11

, 0,0, 1,0,1,0,1,0, 1, . . . ,1︸ ︷︷ ︸
4

, 0, 1, . . . ,1︸ ︷︷ ︸
11

.

1, . . . ,1︸ ︷︷ ︸
11

, 0, 1, 1, 0, 1, 0, 1, . . . ,1︸ ︷︷ ︸
6

, 0, 1, . . . ,1︸ ︷︷ ︸
11

.

2. Segundo ciclo atractor:

1, . . . ,1︸ ︷︷ ︸
11

, 0, 1, 1, 0, 1, 0, 1, 0, 1, . . . ,1︸ ︷︷ ︸
4

, 0, 1, . . . ,1︸ ︷︷ ︸
11

.

1, . . . ,1︸ ︷︷ ︸
11

, 0,0, 1, 0, 1, 0, 1, . . . ,1︸ ︷︷ ︸
6

, 0, 1, . . . ,1︸ ︷︷ ︸
11

.

3. Tercer ciclo atractor:

1, . . . ,1︸ ︷︷ ︸
11

, 0, 1, 1, 0, 0, 0, 1, 0, 1, . . . ,1︸ ︷︷ ︸
4

, 0, 1, . . . ,1︸ ︷︷ ︸
11

.

1, . . . ,1︸ ︷︷ ︸
11

, 0,0, 1, 0, 0, 0, 1, . . . ,1︸ ︷︷ ︸
6

, 0, 1, . . . ,1︸ ︷︷ ︸
11

.

4. Cuarto ciclo atractor:

1, . . . ,1︸ ︷︷ ︸
11

, 0, 1, 1, 0, 0, 0, 1, . . . ,1︸ ︷︷ ︸
6

, 0,0, 1, . . . ,1︸ ︷︷ ︸
9

, 0.

1, . . . ,1︸ ︷︷ ︸
11

, 0, 0, 1, 0, 0, 0, 1, 0, 1, . . . ,1︸ ︷︷ ︸
4

, 0, 1, . . . ,1︸ ︷︷ ︸
10

, 0.

5. Quinto ciclo atractor:

1, . . . ,1︸ ︷︷ ︸
11

, 0,0, 1, 0, 0, 0, 1, 0, 1, . . . ,1︸ ︷︷ ︸
4

, 0, 1, . . . ,1︸ ︷︷ ︸
11

.

1, . . . ,1︸ ︷︷ ︸
11

, 0, 1, 1, 0, 0, 0, 1, . . . ,1︸ ︷︷ ︸
6

, 0, 1, . . . ,1︸ ︷︷ ︸
11

.

6. Sexto ciclo atractor:

1, . . . ,1︸ ︷︷ ︸
11

, 0, 1, 0, . . . ,0︸ ︷︷ ︸
4

, 1, 0, . . . ,0︸ ︷︷ ︸
4

, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0.

1, . . . ,1︸ ︷︷ ︸
11

, 0, . . . ,0︸ ︷︷ ︸
6

, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0.

7. Séptimo ciclo atractor:

1, . . . ,1︸ ︷︷ ︸
11

, 0, 1, 0, . . . ,0︸ ︷︷ ︸
4

, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0.

1, . . . ,1︸ ︷︷ ︸
11

, 0, . . . ,0︸ ︷︷ ︸
6

, 1, 0, . . . ,0︸ ︷︷ ︸
4

, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0.
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Figura 3: Estadística de los atractores en la red del desarrollo del esqueleto larval en el erizo púrpura del Pacífico.

Se tiene que cada atractor está en una componente
débilmente conexa disjunta de las demás, lo que particiona
al diagrama de transición.

La red reguladora de Esqueleto del erizo púrpura del
Pacífico, compuesta por 35 vértices, exhibe una dinámica
notablemente sencilla, similar a la observada en la red
anterior, en donde todos los atractores identificados corres-
ponden a ciclos de periodo dos. En la Figura 3 se presenta
un resumen estadístico del comportamiento asintótico de
esta red, donde destacan los atractores 1 y 2, que concentran
en conjunto aproximadamente el 91% de las condiciones
iniciales analizadas. Específicamente, el atractor 1 alcanza
su participación máxima en el paso cuatro con un 43.3%,
mientras que el atractor 2 presenta su pico en el paso tres
con un 62.5%.

Los atractores 2, 3, 4, 5, 6 y 7 presentan tasas de atracción
significativamente menores y distribuciones más suaves. No
obstante, todos ellos comparten la característica de alcanzar
su máxima probabilidad en la longitud de trayectoria más
prolongada dentro de su componente, lo que sugiere una
convergencia más gradual hacia el estado cíclico. Por otro
lado, el atractor 4, tiene una participación nula estadística-
mente.

La profundidad del diagrama de transición varía entre
cinco y seis pasos según la componente débilmente conexa
considerada. La componente de mayor profundidad coincide
con la de mayor participación relativa. Aunque existen
trayectorias que conducen al atractor en un único paso, estas
representan una fracción muy reducida de la muestra. La
mayoría de las trayectorias transitorias requiere entre dos y
cinco pasos, reflejando así una dinámica transitoria breve,
pero no inmediata ni trivial.

A partir de una muestra aleatoria de diez millones de
condiciones iniciales, se construyeron las funciones de pro-
babilidad del número de pasos necesarios para alcanzar cada

atractor. Todas ellas (con excepción de la correspondiente
al atractor 1, que presenta una distribución más dispersa)
resultaron unimodales, con una fuerte tendencia hacia
trayectorias cortas en comparación con la dimensión total
del sistema. Este comportamiento refuerza la interpretación
de que la red posee una dinámica altamente organizada,
orientada hacia ciclos periódicos accesibles en pocos pasos.

Al igual que en el caso anterior, al examinar las compo-
nentes de los ciclos atractores vemos un claro predominio de
bloques de 1’s tanto al inicio (11 componentes) como al final
(más de nueve, salvo en dos atractores que exhiben mayor
diversidad en ese extremo aunque tienen un comportamiento
periódico). También este patrón puede explicarse por la ele-
vada activación de la red, así mismo evidencía que la mayor
variabilidad del diagrama de transición se concentra en los
segmentos centrales de cada condición inicial.

ANÁLISIS DE COMUNIDADES EN LAS COMPONENTES
ATRACTORAS

Como complemento al estudio dinámico de los atractores,
se realizó un análisis estructural de las comunidades forma-
das por las trayectorias que convergen hacia cada uno de
ellos. Este análisis permite caracterizar la diversidad interna
y la organización topológica de cada componente atractora,
revelando diferencias en la complejidad estructural de sus
trayectorias de atracción.

Endodermo del erizo de mar. En el caso del modelo
correspondiente a la red del endodermo, se analizaron dos
atractores principales. Para ello, se aplicaron técnicas de
detección de comunidades sobre los subgrafos inducidos
por las condiciones iniciales que convergen hacia dichos
atractores. En la Figura 4 se muestra la distribución de la
longitud de las comunidades detectadas. El eje vertical está
en escala logarítmica para resaltar la variabilidad. Se observa
que ambos atractores presentan estructuras comunitarias
amplias, aunque el Atractor 2 tiende a formar comunidades
más extensas.
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Figura 4: Distribución de la longitud de las comunidades para
cada atractor del endodermo del erizo de mar.

Esqueleto del erizo púrpura del Pacífico. En el caso
del modelo correspondiente a la red del esqueleto larval, se
identificaron siete atractores. Sobre estos se aplicaron algo-
ritmos de detección de clústeres para estudiar la estructura de
comunidades inducidas por las trayectorias que convergen
hacia cada uno. La Figura 5 muestra la distribución de
la longitud de dichas comunidades. Al igual que en el ca-
so anterior, se utiliza una escala logarítmica en el eje vertical.

Figura 5: Distribución de la longitud de las comunidades
detectadas en cada componente atractora del esqueleto larval en el

erizo púrpura del Pacífico.

El Atractor 1 presenta la mayor dispersión, con comuni-
dades más extensas, lo que coincide con su alta frecuencia
de aparición en las simulaciones. Atractores como el 2 y
el 3 también muestran estructuras comunitarias complejas,
aunque de menor escala. Por el contrario, los atractores 6
y 7 exhiben comunidades más compactas y concentradas,
indicando trayectorias de atracción más simples.

Las estructuras comunitarias de los atractores más re-
presentativos se ilustran en la Figura 6. Cada subfigura
(a), (b), (c), (d), y (e) es una componente conexa del
diagrama de transición, y está asociada a un único atractor
etiquetado en la correspondiente subfigura, de manera en
que cada nodo representa un estado, las aristas indican

transiciones válidas, y los colores diferencian las comu-
nidades detectadas. La organización jerárquica observada
en algunos atractores da cuenta de diferencias topológicas
significativas, incluso entre atractores con tamaños similares.

(a) Atractor 2 (b) Atractor 3

(c) Atractor 5 (d) Atractor 6

(e) Atractor 7

Figura 6: Estructura de comunidades en los grafos inducidos por
las componentes atractoras de la red del esqueleto larval en el
erizo púrpura del Pacífico. El atractor 4 no aparece debido a su

ausencia en la muestra; el atractor 1 no fue incluido por su tamaño.

En conjunto, los resultados para ambos modelos muestran
que la complejidad estructural de los atractores está correla-
cionada con su participación en la dinámica global del sis-
tema. Atractores dominantes tienden a generar trayectorias
más ramificadas y comunidades de mayor tamaño, mientras
que los menos frecuentes se asocian a estructuras más sim-
ples.

DISCUSIÓN

La complejidad estructural de las redes presentadas en
este artículo no es trivial, y aun así todos los atractores
identificados corresponden a ciclos de periodo dos. Esta
simplicidad emergente no es evidente a priori y resalta la
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capacidad de la topología de la red para organizar dinámicas
complejas en comportamientos altamente predecibles.
Además, esto sugiere una tendencia del sistema hacia
dinámicas recurrentes. Desde una perspectiva biológica,
dicha periodicidad puede estar asociada con procesos de re-
gulación génica alternante durante el desarrollo embrionario,
lo cual puede otorgar a estas redes una funcionalidad robusta.

En ambos casos, se observa una marcada predominancia
de interacciones de tipo activador, con más del 80% de
participación. Asimismo, la tasa de autorregulaciones es
baja (menor al 10%) y una proporción considerable de
vértices participa en módulos de interacción (más del 50%).
Esta configuración estructural sugiere que las redes están
diseñadas para favorecer la sincronización entre nodos
mediante mecanismos de activación.

La combinación de estos factores puede explicar la
convergencia rápida hacia ciclos atractores, incluso en pre-
sencia de una dinámica no lineal y de alta dimensionalidad.
En particular, la alta densidad de activaciones facilita la
propagación eficiente de señales, promoviendo patrones
estables de actividad génica con una mínima profundidad
transitoria.

Estos resultados apoyan el hecho de que la estructura
topológica de una red reguladora de genes no es arbitraria,
sino que está sujeta a presiones evolutivas que favorecen
configuraciones capaces de producir comportamientos
dinámicos estables y robustos. En el contexto del desarrollo
embrionario, donde el tiempo y la precisión son críticos, esta
clase de dinámica periódica puede representar una ventaja
funcional significativa.

La elección de un modelo booleano para este estudio se
fundamenta en que este tipo de enfoque permite capturar
las propiedades globales del paisaje dinámico sin requerir
parámetros cinéticos difíciles de obtener para las GRNs
analizadas. Tal como se discute en la revisión de Barbuti
et al. (2020), los modelos continuos basados en ecuaciones
diferenciales y los modelos estocásticos (como el algoritmo
de Gillespie) ofrecen una descripción más detallada a nivel
cuantitativo, pero dependen de tasas de reacción y constantes
bioquímicas que no están disponibles para estas redes com-
pletas. Por ello, el modelo booleano resulta apropiado para
explorar la estructura de atractores y su relación con la topo-
logía de interacciones. No obstante, una comparación futura
con modelos continuos o estocásticos sería valiosa para
evaluar la robustez del comportamiento periódico observado.
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ABSTRACT

A two compartmental almost periodic model is proposed to describe lead metabolism. Unlike other models proposed to
analyze metal metabolism, all the rates involved in the model are assumed to be almost periodic functions, since it is very
restrictive to assume that the input and output rates involved in lead metabolism are constant. From the analysis of the model,
we prove that the model admits a unique almost periodic solution which is globally stable when some conditions over the
parameters of the model are satisfied. Numerical simulations of the solutions of the model show that the use of constant or
periodic rates in the modeling process, when almost periodic rates should actually be considered, can generate misleading
predictions about the values of the variables. In such scenarios, misleading forecasts could be obtained that might lead
decision-makers to design erroneous strategies, which can have negative impacts from a health perspective.

Keywords:

Lead metabolism, Metal metabolism, Almost periodic function, Cooperative systems, Global attractor

RESUMEN

Se propone un modelo bicompartimental casi periódico para describir el metabolismo del plomo. A diferencia de otros
modelos propuestos para analizar el metabolismo de metales, se supone que todas las tasas involucradas en el modelo son
funciones casi periódicas, ya que es muy restrictivo asumir que las tasas de entrada y salida involucradas en el metabolismo
del plomo son constantes. A partir del análisis del modelo, probamos que este admite una solución casi periódica única que es
globalmente estable cuando se satisfacen ciertas condiciones sobre los parámetros del modelo. Las simulaciones numéricas
de las soluciones del modelo muestran que el uso de tasas constantes o periódicas en el proceso de modelado, cuando en
realidad deberían considerarse tasas casi periódicas, puede generar predicciones erróneas sobre los valores de las variables.
En tales escenarios, se podrían obtener pronósticos engañosos que pueden llevar a los responsables de la toma de decisiones
a diseñar estrategias equivocadas, lo cual puede tener impactos negativos desde una perspectiva de salud.

Palabras Claves:

Metabolismo del plomo, Metabolismo de metales, Función casi periódica, Sistemas cooperativos, Atractor global
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INTRODUCTION

L ead poisoning has been a critical public health concern
in developing countries for at least 50 years. Lead has

been recognized as one of the top ten chemicals of major
public health concern. The main physiological consequences
of lead exposure include disruption of heme synthesis, in-
terference with Ca-mediated cellular processes, impaired
mitochondrial respiration, and oxidative stress (Needleman,
2004; Flora et al., 2012). The spectrum of clinical outcomes
includes cognitive impairment, and developmental delays
in children, as well as hypertension, renal dysfunction, and
reproductive toxicity in adults (Gidlow, 2015).

Lead exposure can occur through various sources, includ-
ing lead-based paint, contaminated soil, and dust (Assi et al.,
2016) as well as lead-based solder in water distribution sys-
tems (Jarvis and Fawell, 2021). It is estimated that 20%
of total lead exposure in the United States occurs through
drinking water. Importantly, current determination meth-
ods were found to underestimate lead concentration in water
from faucets, both in households and schools (Triantafylli-
dou and Edwards, 2012). Lipsticks sold in Mexico but pro-
duced elsewhere, were found to contain 1.17− 1.82 ppm of
lead (average 1.45 ppm). While these concentrations fell
within the FDA regulations (10 ppm), lead in lipsticks from
Ghana exceeded said limit, indicating potential neurotoxic
effects (Saah et al., 2024).

Bioaccumulation of lead across various tissues explains
its systemic toxicity. The rate of bioaccumulation depends
on the exposure route and duration, together with age, nu-
tritional status, and genetic predisposition. Briefly, upon ab-
sorption by inhalation or ingestion, lead travels through the
bloodstream, and is gradually deposited in mineralizing tis-
sues such as bones and teeth. Other organs with detectable
concentrations of lead include liver, kidneys, and brain. Lead
leaves the body mainly through feces, with urine being a mi-
nor ways of excretion.

The dynamics of metal metabolism has been analyzed
trough several types of mathematical models, including qual-
itative regulation models, stochastic models, multi-agent
models, and differential equation models (Curis et al., 2009).
Importantly, the differential equation models are the most
used. Typically, differential equations models of metal
metabolism pay no special attention to the biochemical re-
actions between the metal and the human body. Instead,
metal metabolism is viewed as smooth fluxes of matter and
elimination processes that are modeled assuming a first or-
der kinetic of diffusion processes. These assumptions lead
to linear models whose solutions can be obtained analyti-
cally. Examples of application of linear differential mod-
els in the context of metal metabolism, include alkali metals
such as lithium (Swann et al., 1990), sodium (Levin and Pat-
lak, 1972); alkaline earth metals like calcium (Aubert et al.,
1963), magnesium (Upton and Ludbrook, 2005), strontium
(Bauer and Ray, 1958); transition metals including cadmium
(Redeker et al., 2004), chromium (O’Flaherty et al., 2001),

cobalt (Kahle and Zauke, 2002), copper (Ferreira et al.,
2009), iron (McLaren et al., 1995), mercury (Farris et al.,
2008), nickel (Luciani and Polig, 2007), ruthenium (Beres-
ford et al., 1998), silver (Beresford et al., 1998), vanadium
(Azay et al., 2001), zinc (Yokoi et al., 2003); lanthanides
cerium (Beresford et al., 1998), lanthanum (Bronner et al.,
2008); actinides such as americium Luciani and Polig (2007),
plutonium Polig et al. (2000), uranium (Fisher et al., 1991);
post-transition metals like aluminum (Yokel and McNamara,
2001), lead (Pounds and Leggett, 1998) and the metalloid
selenium (Patterson and Zech, 1992). All models mentioned
assume constant transition rates.

Mathematical models describing the kinetics of lead
metabolism rely on clinical data monitoring the concentra-
tion of lead in several compartments. Such models have
proved critical for risk assessment, exposure estimation, and
public health intervention. Foundational work such as the
Rabinowitz three compartment model with constant coeffi-
cients, emphasized the dynamic equilibrium between com-
partments. Other models introduced more physiological re-
alism (Leggett, 1993). For example, letting parameters de-
pend on sex and age allows for simulation of lead kinetics
across lifespan stages. More recently, models have incor-
porated tissue specific uptake and clearance rate, as well as
mineral turnover rates, enhancing model applicability to en-
vironmental and exposure scenarios.

Modeling kinetics of lead metabolism in the human body
trough differential equations with constant rates can be mis-
leading, since the effects caused by both endogenous and ex-
ogenous factors involved in the lead metabolism are over-
simplified. For example lead intake from various sources
is not constant, due to intrinsic variations in each exposure
route. As a consequence, the results obtained from linear
models leave out scenarios that may be relevant from a health
perspective. On top of that, traditional models with con-
stant rates provide only a first glance at the dynamics of lead
metabolism. This is particularly true in cases in which in-
dividuals are both periodically and aperiodically exposed to
quantities of lead from non-constant sources so varied as diet
or the atmosphere which can in turn alter the lead physiology
in these individuals.

Therefore, the aim of this paper was to formulate and ana-
lyze a compartment model for lead metabolism kinetics with
almost periodic rates. To incorporate biological mechanisms
with oscillatory behaviors in the lead metabolism, we used an
almost periodic model whose rates are given by linear combi-
nations of trigonometric functions which are not necessarily
synchronized. So, the use of almost periodic rates of tran-
sition between compartments offers a novel and important
insight with explanatory potential. Almost periodic mod-
els have been used to understand enzymatic reactions (Díaz-
Marín and Sánchez-Ponce, 2024), protein transcription dy-
namics (Díaz-Marín et al., 2023) and neuronal mechanisms
(Díaz-Marín et al., 2025) among other biological phenom-
ena when endogenous and exogenous stimuli give origin to
oscillatory dynamics.
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THE ALMOST PERIODIC MODEL

In this section, we propose a compartmental almost periodic
model to describe the dynamics of the lead metabolism in
the human body. We constructed the model from Figure 1,
a diagramatic model of lead metabolism proposed by Rabi-
nowitz and coworkers (Rabinowitz et al., 1976). Through
this model, the authors analyzed the lead concentrations in
blood, soft tissue and skeleton which are denoted by X1, X2
and X3, respectively. Lead intake enters the bloodstream and
then transits to soft tissues and bones. Lead exits the body
through secretions.

Figure 1: Diagramatic model of lead metabolism. The numerical
values are the mean transition rates which were estimated from
tracer an balance data from five healthy men Rabinowitz et al.

(1976)

Rabinowitz et al. (Rabinowitz et al., 1976) analyzed the
compartment model described in Figure 1 and concluded
that changes in lead concentration in bones are very slow
in comparison with blood and soft tissue. Therefore, they
constructed a mathematical model only with X1 and X2.

Similarly, we constructed a mathematical model of lead
concentrations in blood and soft tissue by assuming that this
system is input-output connected by mechanisms with an os-
cillatory behavior. To do this, we used transition rates given
by almost periodic functions. The proposed model can be
written as

dX1

dt
=

A(t)
M1(t)

−λ1(t)X1 +λ21(t)
M2(t)
M1(t)

X2,

dX2

dt
= λ12(t)

M1(t)
M2(t)

X1 −λ2(t)X2. (1)

In model (1), Xi, for i, j = 1,2 denotes lead concentration
in compartment i at time t, Mi(t) is the mass of compartment
i, A(t) denotes the rate of recruitment of lead into compart-
ment X1 from outside the body, λi(t) denotes the rate for the
movement of lead out of compartment i. Finally, λi j(t), with
j ̸= i, denotes the rate for movement from compartment j to
i.

ALMOST PERIODIC FUNCTIONS IN COOPERA-
TIVE SYSTEMS

In this first part we summarize some well known basic facts
about the almost periodic functions and cooperative systems.
Almost periodic functions are nowadays a very active re-
search area. We give here only a very basic introduction to

the topic and refer the reader to (Bohr, 1947; Corduneanu,
1968) for further details.

Definition 1 A function φ ∈ C0(R) is almost periodic if, for
all ε > 0 there exist a set of real numbers T (ε) ⊆ R alto-
gether with a length l(ε) > 0 such that for any interval of
length l(ε), there is at least one point τ ∈ T (ε) contained in
that interval such that

|φ(x+ τ)−φ(x)|< ε

for each x ∈ R. We will call numbers in T (ε) translation
numbers and a length for T (ε) will be a number l(ε).

The above collection of every almost periodic functions will
be denoted by AP(R) which is a Banach space endowed with
the usual sup−norm. It is possible to associate to an almost
periodic function ϕ its unique Fourier series:

ϕ ∼ ∑
n∈N

a(λn)eiλnx.

The exponents λn are called the frequencies of φ . Another
well-known result in this area is that, for every almost peri-
odic function there exists the mean value

M (φ) := lim
T→∞

1
T

∫ T

0
φ(x)dx,

this is a bounded linear function M : AP(R) → R with the
following properties:

1. φ ≥ 0 implies M [φ ]≥ 0.

2. The Parseval equality holds:

M [|φ |2] = ∑
n∈N

|a(λn)|2.

Now we review some aspects about cooperative systems,
for a brief introduction to cooperative systems see (Smith,
1995). For two points u,v ∈ R2 denote the partial order u ≤
v if ui ≤ vi for each i, also denote u < v if u ≤ v and u ̸= v.
Let f ,g : R×D ⊆ R3 → R be a couple of differentiable and
almost periodic functions on the first variable. We consider
the system:

x′(t) = f (t,x(t),y(t)),

y′(t) = g(t,x(t),y(t)),
(2)

where we suppose that f (t,x,y),g(t,x,y) are both uniformly
almost periodic with respect to (x,y) ∈ C for every compact
C ⊆ D, i.e., the set of translation numbers, τ(ε), is indepen-
dent of (x,y) ∈C.

More specifically, if f have generalized Fourier expan-
sions,

f (t,x,y)∼ f (x,y)+
∞

∑
n=0

a( f ,λn)cos(λnt)+b( f ,λn)sin(λnt),

f is uniformly almost periodic, whenever the coefficients
a(·,λn),b(·,λn) do not depend on (x,y), see (Corduneanu,
1968), Chapter VI.
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Definition 2 We say that (2) is of the cooperative type, if for
every t ∈ R,

∂ f
∂y

(t,x,y)≥ 0,
∂g
∂x

(t,x,y)≥ 0.

Moreover, (ξ (t),η(t)) is sub-solution if

ξ
′(t) ≤ f (t,ξ (t),η(t)), (3)

η
′(t) ≤ g(t,ξ (t),η(t)). (4)

Analogously, we define a super-solution (Ξ(t),H(t)) by re-
versing inequalities. A pair (ξ (t),η(t)) and (Ξ(t),H(t)) is
ordered if

ξ (t)≤ Ξ(t), η(t)≤ H(t), ∀t ∈ R.

We will use the following result proved in (Díaz-Marín
et al., 2022).

Theorem 1 Suppose that (ξ (t),η(t)) and (Ξ(t),H(t)) is
a sub-super-solution ordered pair of the cooperative ODE
(2). Then, there exists an almost periodic solution satisfy-
ing ξ (t) < x(t) < Ξ(t) and η(t) < y(t) < H(t). The set of
almost periodic solutions, having initial conditions in the
rectangle ξ (0) < x(0) < Ξ(0) and η(0) < y(0) < H(0),
is totally ordered, provided there is no equilibrium. If
(x̌(t), y̌(t)),(ŷ(t), ŷ(t)), denote the minimal and maximal al-
most periodic solutions. Then

x̌(t)≤ x(t)≤ x̂(t), y̌(t)≤ y(t)≤ ŷ(t).

Note that in the case where there is an equilibrium point,
we could have an equilibrium instead of a genuine almost
periodic orbit.

RESULTS

As usual for an almost periodic function v : R → R, we de-
note

v∗ := inf
t∈R

v(t) and v∗ := sup
t∈R

v(t).

Now we state the main result for the almost periodic ki-
netic model given by (1).

Theorem 2 Assume A(t),Mi(t),λi(t) and λi j(t) are continu-
ous almost-periodic functions (not all constant) with A∗ > 0,
Mi∗ > 0,λi∗ > 0,λi j∗ > 0 and that there is no equilibrium
point of (1) with positive coordinates. Suppose further that(

Miλi j

M j

)∗
< λ j∗, i ̸= j, for i, j = 1,2. (5)

Then, there is a unique almost periodic solution (X1,X2) of
(1) whose components are positive. Also, any other solution
of (1) with positive initial conditions converges to this almost
periodic solution, when t → ∞.

Proof A careful examination shows us that system (1) is of
cooperating type. Let us first establish the existence of at
least one almost periodic solution, for this, we need to pre-
scribe suitable sub- and super-solution pairs. To develop a
sub-solution pair, we consider

(ξ (t),η(t)) = (ε, 0) , ε > 0,

these functions satisfy the inequalities in (3), indeed

ξ
′(t) = 0 ≤

[
A(t)

M1(t)
−λ1ε

]
,

η
′(t) = 0 ≤

[
λ12

M1

M2
−λ2(0)

]
.

The right sides are positive for ε > 0 small enough. Thus we
have a sub-solution pair.

For a super-solution pair; we consider

(Ξ(t),H(t)) = (N,N) , N > 0,

these functions verify:

Ξ(t)′(t) = 0 ≥ A(t)
M1

−
[

λ1∗+

(
M2λ21

M1

)∗]
N

≥ A(t)
M1

−λ1N +

(
M2λ21

M1

)
N.

H ′(t) = 0 ≥ N
[(

M1λ12

M2

)∗
−λ2∗

]
≥ N

[
M1λ12

M2
−λ2

]
.

By letting N big enough and using (5), the right sides are
negative, thus constituting a super-solution pair.

Therefore, by Theorem 1 there exists at least one almost
periodic solution for system (1). This concludes the exis-
tence.

For uniqueness, we consider a maximal pair (X̂1, X̂2) and
minimal pair (X̌1, X̌2) of almost periodic solutions. We just
need to prove that X̂1(t)= X̌1(t) and X̂2(t)= X̌2(t). For which
we will use the following well-known statement

Claim 1 Let φ̂ , φ̌ be almost periodic functions such that

φ̂(t)≥ φ̌(t)≥ 0, M
[
φ̂
]
= M

[
φ̌
]
.

Then φ̂(t) = φ̌(t) for every t ∈ R.

Note that the mean M
[
(X̂i)

′]= M
[
(X̌i)

′]= 0, then

M

[
Miλi j

M j

(
X̂i − X̌i

)]
= M

[
λ j

(
X̂ j − X̌ j

)]
, i ̸= j. (6)

Hence, from (6), we get

λ1∗M
[
X̂1 − X̌1

]
≤

(
M2λ21

M1

)∗
M

[
X̂2 − X̌2

]
≤

(
M2λ21

M1

)∗(M1λ12
M2

)∗
λ2∗

M
[
X̂1 − X̌1

]
.

doi: 10.58560/rmmsb.v05.e.025.02

https://doi.org/10.58560/rmmsb.v05.e.025.02


REVISTA DE MODELAMIENTO MATEMÁTICO DE SISTEMAS BIOLÓGICOS, Vol.5( 2025), e25R02 6 of 11

If M
[
X̂1 − X̌1

]
> 0, the above inequality contradicts the

condition in (5). Therefore M
[
X̂1

]
=M

[
X̌1

]
, whence X̂1 =

X̌1 by the Claim 1. This in turn implies that X̂2 = X̌2 via (6).
For completeness, we will give proof of the above claim.

Proof Since φ̂(t), φ̌(t) are almost periodic, then they are
bounded. Hence,

0 ≤ M
[
φ̂

2 − φ̌
2]≤ M

[
(φ̂ − φ̌)(φ̂ + φ̌)

]
≤(2sup{φ̂(t)})M

[
φ̂ − φ̌

]
= 0.

Therefore, M
[
φ̂ 2

]
= M

[
φ̌ 2

]
. Thus,

0 ≤ M
[
(φ̂ − φ̌)2

]
≤ 2

(
M

[
φ̂ 2

]
−M

[
φ̂ φ̌

])
≤ 2

(
M

[
φ̂ 2

]
−M

[
φ̌ 2

])
= 0.

If we apply Parseval’s Theorem on the sum of the squares of
the Fourier coefficients of φ̂ − φ̌ we get φ̂ ≡ φ̌ . □

Finally, we can conclude the proof of Theorem 2.
From the first part, we can take an arbitrarily small sub-

solutions. Also we can take an arbitrarily large super-
solutions. Thus we have a single almost periodic orbit which
is an attractor at the entire set R2

>0. This completes the proof
of Theorem 2.

□

NUMERICAL SIMULATIONS OF THE SOLU-
TIONS OF THE MODEL

In this section, examples of the behavior of the solutions of
model (1) are shown. To do this, we use the following func-
tions to model almost periodic scenarios.

A(t) = Aa
(
Ab +Ac sin(Adt)+Ae cos(A f t)

)
,

M1(t) = M1a
(
M1b +M1c sin(M1dt)+M1e cos(M1 f t)

)
,

M2(t) = M2a
(
M2b +M2c sin(M2dt)+M2e cos(M2 f t)

)
,

λ1(t) = λ1a
(
λ1b +λ1c sin(λ1dt)+λ1e cos(λ3 f t)

)
,

λ2(t) = λ2a
(
λ2b +λ2c sin(λ2dt)+λ2e cos(λ3 f t)

)
,

λ12(t) = λ3a
(
λ3b +λ3c sin(λ3dt)+λ3e cos(λ3 f t)

)
,

λ21(t) = λ4a
(
λ4b +λ4c sin(λ4dt)+λ4e cos(λ4 f t)

)
.

(7)
For the numerical simulations given in Figure 2, we use

the following values of the parameters Aa = 0.048,Ab =
1.0,Ac = 0.2,Ad =

√
0.03,Ae = 0.5,A f =

√
0.05,M1a =

0.754,M1b = 1.0,M1c = 0.1,M1d =
√

3,M1e = 0.7,M1 f =√
5,M2a = 2.985,M2b = 1.0,M2c = 0.005,M2d =

√
3,M2e =

0.004,M2 f =
√

5,λ1a = 0.16,λ1b = 1.0,λ1c = 0.01,λ1d =√
3,λ1e = 0.04,λ1 f =

√
5,λ2a = 0.012,λ2b = 1.0,λ2c =

0.3,λ2d =
√

3,λ2e = 0.02,λ2 f =
√

5,λ3a = 0.015,λ3b =

1.0,λ3c = 0.04,λ3d =
√

3,λ3e = 0.5,λ3 f =
√

5,λ4a =

0.002,λ4b = 1.0,λ4c = 0.4,λ4d =
√

3,λ4e = 0.02,λ4 f =
√

5.

With these values of the parameters,
(

M2λ21
M1

)∗
= 0.13534

and
(

M1λ12
M2

)∗
= 0.0012756 while λ1 = 0.1520414456 and

0.008170694320. Therefore, the conditions in Theorem 2
given by

(
Miλi j

M j

)∗
< λ j∗, i ̸= j, are satisfied. So, the solutions

of the model converge to a unique almost periodic attractor,

for all initial conditions. In Figure 2, we show this scenario
using the initial conditions: (0.0035,0.98), (10.0035,0.85),
and (5.0035,1.1).

(a)

(b)

Figure 2: Solutions of the model converge to a global almost
periodic attractor.

In Figure 3, we show the behavior of the solutions of the
model when all its rates are assumed to be constant. To do
this, the values of the parameters A j,Mk, j,λs j , in (7), are zero
for j = c,d, k = 1,2, and s = 1,2,3,4. All other values of
the parameters of the model are the same that those used in
Figure 2. Notice that, the solutions of the model tend to a
global attractor and the solutions of the model do not present
an oscillatory behavior.

In Figure 4, solutions of the model are shown simultane-
ously for the cases of almost periodic rates and constant rates.
The values of the parameters in these cases are the same used
in the numerical simulations given in Figures 2 and 3, respec-
tively. In this case, we use functions where the almost peri-
odic rates oscillate around the values of the constant rates.
In this case, the solutions of these scenarios are close at the
beginning of time; however, the almost periodic solutions do
not oscillate around the equilibrium solution of the model
with constant rates at the long term.

Finally, for comparison purposes, in Figure 5, we show
the solutions of the model in the almost periodic and
periodic cases. For the almost periodic case, we use
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(a)

(b)

Figure 3: Solutions of the model tend to an equilibrium point
when all its rates are constant.

(a)

(b)

Figure 4: Solutions of the model in the almost periodic and
constant case.
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one case given in Figure 2. In contrast, for the solu-
tions in the periodic case, we used the following param-
eter values A4 =

√
0.04,A6 =

√
0.09,M1c =

√
4,M1d =√

9,M2c =
√

4,M2d =
√

9,λ1c =
√

4,λ1d =
√

9,λ2c =√
4,λ2d =

√
9,λ3c =

√
4,λ3d =

√
9,λ4c =

√
4,λ4d =

√
9. All

other values of the parameters are the same as those used in
Figure 2. Observe that the solutions in each case converge
to a global attractor, which is an almost periodic or periodic
solution, depending on whether the model is periodic or al-
most periodic. Notice that, the solutions of the model in both
cases are very close initially; however, as time passes, there
are intervals of time in which the solutions diverge.

(a)

(b)

Figure 5: Solutions of the model in the almost periodic and
periodic case.

We use the Sobol method, which is a variance-based
global sensitivity analysis, to perform a sensitivity analysis
of the solution (X1,X2) of model (1), with respect to the pa-
rameters x=(A(t),M1(t),M2(t),λ1(t),λ2(t),λ12(t),λ21(t)).
This method decomposes the variance of the output of the
model into fractions which can be attributed to sets of inputs
using a sensitivity index. To obtain the results shown in
Tables 1 and 2, we use the python library Salib (Herman
and Usher, 2017) with the values of the parameters given
by Aa ∈ [0.28,0.95],M1a ∈ [1.1,1.9],M2a ∈ [2.7,3.1],λ1a ∈
[0.64,0.68],λ2a ∈ [0.72,0.76],λ3a ∈ [0.15,0.35],λ4a ∈
[0.18,0.42]. All other values of the parameters of the model

are given by those used in the simulation shown in Figure 2.
From an analysis of Tables 1 and 2, we can conclude that

the variance in X1 is dominated by the direct effect of the pa-
rameter A(t) (accounting for almost 60%). Although there is
an interaction component, the sum of the S1(≈ 0.934) is very
close to 1, indicating that the model is close to being additive.
The parameters λ12(t) and λ21(t) are the ones that depend
most on interactions to exert their total influence on X1. The
variance in X2(t) is explained almost entirely by λ12(t) and
A(t), but the role of interactions is more pronounced than in
X1. The parameter λ12(t) is not only the dominant one, but its
interactions (0.0726) are the greatest source of non-additive
variance in the model. This suggests that to control X2(t),
it is necessary not only to estimate λ12(t) with precision, but
also to understand how it combines with the variation of other
parameters (especially A(t)).

DISCUSSION

Lead is the second most toxic metal, naturally found in a
very limited amount. Since lead serves industrial purposes,
the magnitude of a society´s industrial sector can be thought
as proportional to the scenarios of lead pollution. Examples
of pollution are mining, and pollution of agricultural soils as
well as water. Workers of, and neighborhoods around these
industries often present health issues caused by long-term ex-
posure (Raj and Das, 2023).

Mathematical models have been used to understand a large
variety of problems derived from metal metabolism (Curis
et al., 2009). Among those, compartmental models, given by
differential equations have been widely used to describe the
evolution of a chemical species (a drug or lead concentration)

Table 1: Sobol Index Results for the solution X1(t) of the
model.

Parameter S1 (± IC) ST (± IC)
Interaction
(ST −S1)

A(t) 0.5969±0.0324 0.6322±0.0278 0.0353
M1(t) 0.1524±0.0176 0.1724±0.0086 0.0199
M2(t) 0±0 0±0 0
λ1(t) 0.0052±0.0039 0.0070±0.0004 0.0018
λ2(t) 0.0008±0.0014 0.0012±0.0001 0.0004
λ12(t) 0.0935±0.0154 0.1243±0.0078 0.0308
λ21(t) 0.0912±0.0140 0.1248±0.0079 0.0335

Table 2: Sobol Index Results for the solution X2(t) of the
model.

Parameter S1 (± IC) ST (± IC)
Interaction
(ST −S1)

A(t) 0.3823±0.0258 0.4361±0.0252 0.0538
M1(t) 0±0 0±0 0
M2(t) 0.0060±0.0041 0.0077±0.0006 0.0017
λ1(t) 0.0049±0.0032 0.0067±0.0005 0.0018
λ2(t) 0.0051±0.0031 0.0070±0.0005 0.0019
λ12(t) 0.4583±0.0297 0.5309±0.0284 0.0726
λ21(t) 0.0609±0.0134 0.0945±0.0071 0.0336
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(a)

(b)

Figure 6: Cases (a) and (b) show the Sobol indices for the
solutions X1 and X2 of model (1), respectively. The calculated

indices, determined for several ti values, were found to be
independent of ti.

in any compartment of the body. To do this, modelers usually
assume that diffusion between compartments follows-first or-
der kinetics, in which transition rates are assumed constant.
The resulting model is linear independently of its complex-
ity. As a consequence, its analytical solution can be obtained
and the concentration of the chemical species is known at
all times. The usefulness of linear models depend on its as-
sumptions being met. When first order kinetics do not apply,
a linear model does not adequately describes the dynamics of
the chemical species among compartments. This is the case
of environmental drives, which affect some transition rates in
the modelling process.

In this work, we propose an almost periodic differen-
tial equation model that generalizes the model for lead
metabolism proposed in (Rabinowitz et al., 1976). For this
purpose, the rates of the model were taken as almost peri-
odic functions. The physiological basis rely primarily on
circadian clocks, as well as nutritional status: Intestinal ab-
sorption of lead is known to increase in the fasted state,
and with iron/calcium deficiency (Ragan, 1983). Therefore,
lead intake is expected to oscillate for populations with sea-
sonal food insecurity, or regular dietary cycles. Addition-
ally, lead concentration in blood is likely to follow a circa-
dian rhythm: Markers of bone resorption peak at night/early
morning (Bjarnason et al., 2002). This means that bone-
stored lead released into plasma peaks on an almost daily
basis. Renal excretion is also known to show circadian

rhythmicity: urinary flow as well as solute excretion (in-
cluding metals) decrease during the night (Solocinski and
Gumz, 2015), adding to the concentration of lead in periph-
eral blood. Other sources of variability have also been de-
tected. For example, maternal blood lead is known to in-
crease during pregnancy. In this context, bone contributes a
large fraction of the blood lead levels (Gulson et al., 1997).
In summary, lead metabolism is not constant, as early models
portrayed. Rates of metabolic intake, deposition and excre-
tion are likely to be under the influence of at least two almost
periodic drivers, supporting our approach to the mathemati-
cal modelling of lead dynamics in the human body.

From an analysis of the existence and uniqueness of al-
most periodic solutions of the model, we proved that the
model admits a unique almost periodic solution when the
conditions in Theorem 2 are satisfied. We further proved
that this almost periodic solution is a global attractor. There-
fore, for every initial condition, the solutions converge to
this almost periodic attractor; see Figure 2. Importantly, we
showed that the choice of constant over almost periodic rates
has a profound effect on the overall dynamics. In particular,
constant rates tend to underestimate lead concentration when
compared to almost periodic rates (Figure 4). Notice that so-
lutions associated with both scenarios are close at the begin-
ning of time, but they separate as time goes by. Through nu-
merical results, in Figure 4, we show that small variations in
the rates of the model lead to very different scenarios, which
means that health decision makers must be cautious when in-
terpreting model outputs obtained from clinical data, due to
natural variation.

A similar situation was observed when comparing periodic
and almost periodic rates. A side by side comparison (Figure
5) shows that the concentration of lead can be either under
or overestimated by the model with periodic rates. In Figure
5, it is shown that the solutions of the model are close at
the beginning of time; however, in future times, there are
intervals of time in which the solutions are close and there are
intervals in which they separate. Through these scenarios,
we show that misleading forecasts can occur if periodic or
constant rates are used to model lead metabolism since the
input and output of lead in the body are neither constant nor
periodic. In such a situation modeling lead metabolism with
almost periodic model might be a better alternative.

From the Sobol analysis, we can conclude that X1 is more
sensitive to the parameter A(t), while X2 is more sensitive to
changes in λ12(t) together with its other interactions, espe-
cially with the parameter A(t). That is, for X1, the sensitivity
is primarily linear with respect to A(t), whereas for X2, the
sensitivity is nonlinear.

Lead metabolism has been analyzed in different compart-
ments such as bone, blood and soft tissues or through other
refinements; for example, for one in which soft tissue is sub-
divided into liver, kidneys and neural tissue or one in which
mineralized tissue can be subdivided into bones and teeth.
Therefore, future refinements of our present study may in-
clude additional compartments.
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RESUMEN

Este estudio presenta un modelo tritrófico que describe las interacciones entre una presa, un predador dominante y un meso-
predador, incorporando depredación intragremial, competencia interespecífica y respuestas funcionales mixtas (tipo III para el
predador tope y tipo II para el mesopredador). A través de un análisis de estabilidad local, se identifican las condiciones bajo
las cuales puede sostenerse la coexistencia de las tres especies. Los resultados revelan que el equilibrio con coexistencia solo
es viable en un subconjunto estrecho del espacio de parámetros, lo que evidencia la fragilidad estructural del sistema. El me-
sopredador se destaca como el componente más vulnerable, susceptible a ser excluido ante variaciones en tasas de consumo o
mortalidad, especialmente cuando enfrenta simultáneamente presión del predador dominante y una oferta limitada de presas.
Asimismo, se destaca el papel clave de la capacidad de carga de la presa como parámetro clave, capaz de inducir transiciones
cualitativas en la dinámica del sistema y definir umbrales críticos para la persistencia de los niveles tróficos superiores. Este
trabajo aporta una base teórica para comprender cómo se configura la estabilidad ecológica en sistemas con competencia
intragremial y ofrece criterios relevantes para la conservación en ecosistemas sujetos a presión antrópica o fragmentación.

Palabras Claves:

Biomatemática, Ecología Matemática, Biotecnología Matemática, modelo tritrófico, depredación intragremial, respuesta fun-
cional mixta

ABSTRACT

This study presents a tritrophic model describing the interactions among a prey, a dominant predator, and a mesopredator,
incorporating intraguild predation, interspecific competition, and mixed functional responses (Type III for the top predator
and Type II for the mesopredator). Through local stability analysis, the conditions under which the coexistence of the three
species can be sustained are identified. The results reveal that the coexistence equilibrium is viable only within a narrow
subset of the parameter space, thus highlighting the structural fragility of the system. The mesopredator stands out as the
most vulnerable component, susceptible to exclusion due to variations in consumption or mortality rates, especially when
simultaneously facing pressure from the dominant predator and a limited prey supply. Likewise, the key role of the prey’s
carrying capacity is highlighted as a crucial parameter, capable of inducing qualitative transitions in the system’s dynamics
and defining critical thresholds for the persistence of the higher trophic levels. This work provides a theoretical basis for
understanding how ecological stability is configured in systems with intraguild competition and offers relevant criteria for
conservation in ecosystems subjected to anthropic pressure or fragmentation.

Keywords:

Biomathematics, Mathematical Ecology, Mathematical Epidemiology, tritrophic model, intraguild predation, mixed functio-
nal response
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INTRODUCCIÓN

C omprender la dinámica de los ecosistemas requiere
analizar las interacciones entre las especies que los

componen. Entre estas interacciones, las relaciones tróficas
permiten explicar cómo fluye la energía a través de los nive-
les biológicos y cómo se estructura la biodiversidad. La eco-
logía teórica ha abordado estas relaciones mediante el desa-
rrollo de modelos que representan de forma simplificada las
complejas redes de alimentación que sostienen a las comuni-
dades naturales.

CADENAS TRÓFICAS

Las cadenas tróficas representan la jerarquía de los orga-
nismos según su rol en el flujo de energía de los ecosistemas.
En la base se encuentran los productores primarios o autó-
trofos, como plantas y algas, que convierten la energía solar
en biomasa. Estos son consumidos por los herbívoros o con-
sumidores primarios. Luego, aparecen los mesopredadores,
que se alimentan de herbívoros, y finalmente los predadores
tope o dominantes, que consumen tanto a mesopredadores
como a grandes herbívoros (Di Bitetti, 2008).

Los predadores dominantes cumplen un rol regulador cru-
cial en los ecosistemas, ya que afectan no solo a sus presas
directas, sino también a niveles tróficos inferiores mediante
efectos en cascada, modificando la abundancia y distribución
de diversas especies (Rumiz, 2010; Di Bitetti, 2008).

DEPREDACIÓN

Dentro de las interacciones que ocurren entre diferentes
especies, una de las más importantes para la estructuración
de comunidades ecológicas es la depredación (Romo and
Caicova, 2007). Esta interacción adquiere una dimensión
particular cuando ocurre entre especies que pertenecen a
un mismo gremio trófico, es decir, aquellas que comparten
nichos similares. En este contexto, se denomina depredación
intragremio (Polis et al., 1989).

La depredación intragremio puede emerger en escenarios
donde especies simpátricas compiten por recursos semejan-
tes. Esta situación puede derivar en competencia por interfe-
rencia, en la que los competidores menos eficientes interfie-
ren directamente con los más especializados, lo cual puede
culminar en actos de depredación entre ellos (Polis et al.,
1989; Palomares and Caro, 1999; Grassel et al., 2015). A
diferencia de otras formas de competencia, esta interacción
incluye el ataque, la muerte y el consumo del individuo afec-
tado (Polis and Holt, 1992).

MODELOS PREDADOR-PRESA

Uno de los métodos más básicos para proyectar los cam-
bios en el tiempo de una población son las ecuaciones dife-
renciales (Kitzes, 2022). La idea fundamental es utilizar una
ecuación que, a partir del número actual de individuos, per-
mita estimar el tamaño poblacional en un periodo futuro.

En ecología teórica, los modelos predador-presa constitu-
yen herramientas esenciales para representar las dinámicas
entre especies que interactúan tróficamente. Estos modelos
permiten explorar cómo la depredación influye en la estabi-
lidad y la coexistencia dentro de las comunidades ecológicas.

Uno de los primeros modelos de ecuaciones diferenciales
aplicados a relaciones interespecíficas fue desarrollado
por Lotka y Volterra. Esta formulación corresponde a una
extensión del modelo logístico de crecimiento individual
de las especies, al que se le incorpora un parámetro de
interacción entre estas (Kitzes, 2022).

A partir de este enfoque, se han desarrollado diversas
formulaciones matemáticas que dieron origen a modelos teó-
ricos cada vez más complejos para representar la interacción
entre especies. La literatura científica reciente sobre modelos
predador-presa ha abordado temas como el análisis de los
patrones temporales en función de diferentes respuestas
funcionales (Majumdar et al., 2022; Naik et al., 2022a; Jana
and Kumar Roy, 2022; Barman and Ghosh, 2022), así como
los efectos ecológicos conocidos como el “efecto Allee” y
el “efecto miedo” en las presas (Li et al., 2022; Naik et al.,
2022b; Devi and Jana, 2022; Lan et al., 2022; Gökçe, 2022).

En particular, los modelos tritróficos extienden este mar-
co al incluir múltiples niveles tróficos, permitiendo represen-
tar sistemas donde coexisten varios predadores que compiten
por presas comunes. Estos modelos ofrecen una descripción
más realista de la complejidad ecológica, facilitando el aná-
lisis de mecanismos como la depredación intragremio y la
competencia trófica entre predadores.

RESPUESTAS FUNCIONALES

La respuesta funcional es la relación entre la tasa de
depredación (Presas/tiempo) y la densidad de presas (Smith
and Smith, 2007). Holling (1965) tipificó las respuestas
funcionales en tres clases diferentes:

Tipo I: Esta respuesta funcional se basa en el supuesto de
que el cambio en la densidad de la población de predadores
es proporcional a la densidad de la población de presas dispo-
nible (x). La expresión matemática asociada a esta respuesta
corresponde a

h(x) =

 γx si 0 ≤ x < c

γc si c > x,

donde x es la densidad de presas. Se puede entender que
existe un aumento lineal de consumo de los predadores
respecto a la densidad de población de presas, llegando a
un punto donde este valor es constante (Ej: fitoplancton y
zooplancton).

Tipo II: En este tipo de respuesta el número de presas con-
sumidas por el predador se incrementa pero con una tasa de-
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creciente, en función del incremento de la densidad de la pre-
sa (Badii et al., 2013). Es la llamada respuesta Monod de tipo
hiperbólica, donde el parámetro γ es la tasa máxima de con-
sumo percápita y a es la tasa de saturación media, es decir,
la cantidad de presas en el que la tasa de depredación alcan-
za la mitad de su valor máximo (Garay-Gonzales, 2020). El
modelo que describe este comportamiento es

h(x) =
γx

a+ x
.

Tipo III: Los predadores con este tipo de respuesta tienen
una dieta basada en distintas especies de presas y su consu-
mo es proporcional a sus abundancias, cambiando a las es-
pecies más abundantes y por tanto, permiten que las especies
con menor densidad poblacional tengan oportunidad de in-
crementar sus poblaciones de nuevo (Badii et al., 2013). Es
una respuesta sigmoidal que incluye la característica de que
los predadores son ineficientes cuando los niveles de presas
son bajos, y descrita por Al-Moqbali et al. (2018). Su ecua-
ción matemática corresponde a

h(x) =
γx2

a2 + x2 ,

donde γ y a tienen el mismo sentido ecológico que en la res-
puesta funcional tipo II.

CONDICIÓN DE LIPSCHITZ LOCAL

La unicidad de las soluciones del sistema de Ecuaciones
Diferenciales Ordinarias (EDOs) se garantiza mediante la
condición de Lipschitz local. Una función f(u) es localmente
Lipschitz continua en un dominio D si, para todo compacto
S ⊂ D, existe una constante L > 0 tal que para ua,ub ∈ S:

∥f(ua)− f(ub)∥ ≤ L∥ua −ub∥.

Cuando un sistema es continuamente diferenciable (C1) en
el ortante positivo R3

≥0, la condición de Lipschitz local se
satisface automáticamente (Hirsch et al., 2013).

ESTABILIDAD LOCAL

Para analizar el comportamiento del sistema no lineal
en las cercanías de un punto de equilibrio, se emplea la
linealización del sistema a través de su matriz Jacobiana.
Aunque la dinámica completa puede ser altamente no
lineal, el sistema linealizado proporciona una aproximación
local válida siempre que el equilibrio sea hiperbólico.
Esta propiedad está garantizada por el teorema clásico
de Hartman–Grobman, el cual establece la equivalencia
topológica entre el sistema no lineal y su linealización en un
entorno del equilibrio (Edwards, 2013).

Así mismo se pueden determinar las condiciones de esta-
bilidad sin calcular explícitamente las raíces del polinomio
característico, aplicando el Criterio de Routh–Hurwitz. Este
criterio proporciona condiciones algebraicas necesarias y
suficientes, expresadas en términos de los coeficientes del

polinomio, que deben cumplirse para garantizar que todas
las raíces tengan parte real negativa Thieme (2003).

A continuación se presentan los dos resultados fundamen-
tales utilizados en este análisis.

Teorema 1 (Teorema de Hartman–Grobman) Sea
F : Rn → Rn un campo vectorial suave asociado al
sistema dinámico

Ẋ = F(X), X = (x,y,z).

Sea (x0,y0,z0) un punto de equilibrio del sistema, y sea J la
matriz Jacobiana evaluada en dicho punto:

J =

∂x f1 ∂y f1 ∂z f1
∂x f2 ∂y f2 ∂z f2
∂x f3 ∂y f3 ∂z f3


(x0,y0,z0)

.

El sistema linealizado asociado es:

Ẋ = J ·X.

Si el equilibrio es hiperbólico (esto es, el Jacobiano no po-
see valores propios con parte real nula), entonces el flujo del
sistema no lineal es localmente topológicamente equivalente
al flujo del sistema linealizado. En particular:

• Si Re(λi) < 0 para todo i, entonces el equilibrio es lo-
calmente asintóticamente estable.

• Si existe algún λi con Re(λi) > 0, el equilibrio es ines-
table.

• Si alguno de los valores propios tiene parte real cero, el
equilibrio es no hiperbólico y no puede determinarse su
estabilidad mediante la linealización.

Teorema 2 (Criterio de Routh–Hurwitz ) Sea F : R3 →
R3 un campo vectorial suave y sea (x0,y0,z0) un punto de
equilibrio. Sea J la matriz Jacobiana evaluada en dicho equi-
librio. El polinomio característico de J es:

p(λ ) = λ
3 + τ1λ

2 + τ2λ + τ3,

donde

τ1 =− tr(J),

τ2 = ∑
1≤i< j≤3

Mi j(J),

τ3 =− det(J),

El equilibrio (x0,y0,z0) es localmente asintóticamente es-
table si y sólo si se satisfacen simultáneamente las siguientes
desigualdades de Routh–Hurwitz:

τ1 > 0, τ2 > 0, τ3 > 0, τ1τ2 > τ3.

En caso contrario, el equilibrio es inestable. Si alguna de
estas igualdades se anula, el sistema es no hiperbólico y la
estabilidad local no puede determinarse únicamente a partir
de la linealización.
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AMORTIGUAMIENTO DINÁMICO, FUERZA ESTABILIZA-
DORA Y UMBRALES DE PERSISTENCIA

El amortiguamiento dinámico se refiere a la velocidad
con la cual un sistema retorna a su equilibrio después de
sufrir una perturbación. Formalmente, este comportamiento
queda determinado por la parte real de los autovalores del
Jacobiano evaluado en el equilibrio: cuanto más negativa
es dicha parte real, mayor es el amortiguamiento y más
rápidamente el sistema vuelve a su estado estable. Esta
interpretación es estándar en ecología teórica y se encuentra
desarrollada en trabajos clásicos sobre estabilidad local y
resiliencia (May, 1973; Hastings and Gross, 2012).

La fuerza estabilizadora corresponde a los mecanismos
que promueven la coexistencia al reducir la intensidad de
la competencia efectiva entre especies. En el marco de
coexistencia propuesto por Chesson (2000), esta fuerza se
cuantifica mediante procesos que generan niche differences,
tales como variabilidad ambiental, partición de recursos
o respuestas no lineales al ambiente. Estos mecanismos
disminuyen la competencia interespecífica en relación con
la intraespecífica, favoreciendo que cada especie se recupere
cuando es rara. Una mayor fuerza estabilizadora expande
la región de coexistencia y fortalece la estabilidad de las
poblaciones bajo perturbaciones.

Por otro lado, los umbrales de persistencia definen las con-
diciones mínimas bajo las cuales una población o especie
puede mantenerse en el tiempo sin extinguirse. En modelos
deterministas, estos umbrales suelen expresarse como condi-
ciones para que exista un equilibrio positivo estable o Este
enfoque, ampliamente utilizado en teoría de coexistencia y
dinámica de poblaciones, aparece en trabajos fundamentales
como los de Kot (2001) y Chesson (2000). En sistemas mul-
tiespecíficos, estos umbrales se vinculan a las condiciones de
invasibilidad y a la persistencia a largo plazo bajo oscilacio-
nes o variabilidad ambiental (Huisman and Weissing, 1999).

OBJETIVOS DEL ESTUDIO

Este trabajo tiene por objetivos:

• Formular un modelo tritrófico que incorpore depreda-
ción intragremial y respuestas funcionales mixtas.

• Analizar la estabilidad local de los puntos de equilibrio.

• Proponer condiciones para la coexistencia y exclusión
de las especies.

MODELO MATEMÁTICO

El estudio se centra en la dinámica de un ecosistema trófi-
co modelado bajo un esquema de predación intragremial que
incluye un predador tope oportunista (x(t)), un mesopreda-
dor (y(t)), y una presa común (z(t)). El predador tope (x(t))
exhibe un comportamiento oportunista, consumiendo a sus
presas con una Respuesta Funcional (RF) de Holling Tipo

III. En contraste, el mesopredador (y(t)) presenta una RF Ti-
po II sobre la presa z(t). El sistema incorpora la predación
del mesopredador por el tope, mientras que la dinámica del
recurso se rige por un crecimiento logístico. Bajo estas con-
sideraciones, se formula el siguiente modelo:

dx
dt

= α1

(
γ1z(t)2

a2
1+z(t)2

)
x(t)+α1

(
γ2y(t)2

a2
2+y(t)2

)
x(t)−β1x(t),

dy
dt

= α2

(
γ3z(t)

a3+z(t)

)
y(t)−

(
γ2y(t)2

a2
2+y(t)2

)
x(t)−β2y(t),

dz
dt

= r
(

1− z(t)
K

)
z(t)−

(
γ1z(t)2

a2
1+z(t)2

)
x(t)−

(
γ3z(t)

a3+z(t)

)
y(t),

(1)

donde los parámetros son: r, la tasa de crecimiento de la pre-
sa; K, la capacidad de carga constante del ambiente; γi, las
tasas máximas de consumo per cápita; ai, las constantes de
saturación asociadas a las respuestas funcionales; αi, las efi-
ciencias tróficas de conversión de biomasa; y βi, las tasas de
mortalidad natural de cada especie. Se asume que la eficien-
cia trófica del predador tope es igual en todos los casos.

PROPIEDADES CUALITATIVAS DEL SISTEMA

El sistema ecológico considerado presenta propiedades es-
tructurales que garantizan la relevancia biológica de las tra-
yectorias. En primer lugar, el ortante positivo

R3
≥0 = {(x,y,z) : x ≥ 0, y ≥ 0, z ≥ 0}

es un conjunto positivamente invariante. Esto se sigue
de la forma multiplicativa de las ecuaciones de x(t) y
y(t), y del carácter logístico de la evolución de z(t): si
x(0),y(0),z(0) ≥ 0, entonces las soluciones permanecen en
dicho dominio para todo t > 0.

Para formalizar estas propiedades esenciales, y dado que
las funciones del lado derecho del sistema son continuamente
diferenciables (clase C1) en R3

≥0 (lo cual implica la condición
de Lipschitz local), podemos establecer el siguiente resultado
fundamental:

Teorema 3 (Existencia, Unicidad y Acotación Global)
Para cualquier condición inicial u0 = (x0,y0,z0) en
el ortante positivo R3

≥0, existe una única solución
u(t) = (x(t),y(t),z(t)) que satisface el sistema de ecuacio-
nes. Dicha solución es no negativa para todo t ≥ 0 y está
definida globalmente (no presenta explosiones en tiempo
finito).

Por otra parte, en ausencia de depredación, la población
presa está acotada por su capacidad de carga, es decir,
z(t) ≤ K. Como consecuencia, las poblaciones predadoras
también quedan acotadas, ya que su crecimiento máximo
está limitado por la abundancia del recurso presa.

Estas propiedades garantizan que el sistema es biológica-
mente consistente, que no presenta explosiones en tiempo fi-
nito y que las soluciones existen globalmente.
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EQUILIBRIOS DEL SISTEMA

En esta sección se determinan los puntos de equilibrio o
estacionarios del sistema, estableciendo condiciones paramé-
tricas para que sean reales y con significancia biológica. Los
puntos de equilibrio (x∗,y∗,z∗) satisfacen el siguiente siste-
ma algebraico, obtenido al anular las derivadas temporales:

α1

(
γ1z2

a2
1 + z2

)
x+α1

(
γ2y2

a2
2 + y2

)
x−β1x = 0,

α2

(
γ3z

a3 + z

)
y−

(
γ2y2

a2
2 + y2

)
x−β2y = 0,

r
(

1− z
K

)
z−

(
γ1z2

a2
1 + z2

)
x−

(
γ3z

a3 + z

)
y = 0.

(2)

Los puntos de equilibrios del sistema corresponden a:

• Equilibrio trivial: (x∗,y∗,z∗) = (0,0,0).

• Presas con capacidad de carga: (x∗,y∗,z∗) = (0,0,K),
cuando los predadores están ausentes.

• Equilibrio con x = 0, y ̸= 0, z ̸= 0:
En este caso se entiende que los dos predadores del sis-
tema se han extinto, por lo que el sistema se reduce a:

α2

(
γ3z

a3 + z

)
−β2 = 0,

r
(

1− z
K

)
z−

(
γ3z

a3 + z

)
y = 0

Con esto se obtiene el punto de equilibrio:

x∗ = 0,

y∗ =
rz∗ (1− z∗/K)

γ3z∗/(a3 + z∗)
=

r(a3 + z∗)
γ3

(
1− z∗

K

)
,

z∗ =
a3 ·β2

(α2γ3 −β2)
.

Para la existencia de este equilibrio positivo (donde y∗ >
0 y z∗ > 0) se una condición que relaciona la tasa de
crecimiento de la especie Y con la capacidad de carga K
y las tasas de saturación y decaimiento, se expresa como

α2γ3 > β2

(
1+

a3

K

)
.

Esto es equivalente a que el nivel de recurso Z requerido
para sostener a Y en el equilibrio (z∗) sea menor que la
capacidad de carga K del ambiente: z∗ < K.

• Equilibrio con x ̸= 0, y = 0, z ̸= 0:

En este caso, el mesopredador está ausente, por lo que
se deben resolver las siguientes ecuaciones:

α1

(
γ1z2

a2
1 + z2

)
−β1 = 0,

r
(

1− z
K

)
z−

(
γ1z2

a2
1 + z2

)
x = 0.

Resolviendo este sistema se obtiene:

x∗ =
α1r
β1

(
1− z∗

K

)
y∗ = 0,

z∗ = a1

√
β1

α1γ1 −β1
.

En este caso, el equilibrio representa un escenario donde
el predador tope se mantiene gracias a la abundancia de
la presa, mientras que el mesopredador ha sido excluido
del sistema. La permanencia de este equilibrio positivo
se mantiene sujeta a que se mantenga

α1γ1 > β1

(
1+

K2

α2
1

)
,

lo que corresponde a la relación de la capacidad de con-
sumo de el predador tope sobre la presa con su tasa de
mortalidad (β1), asegurando que el z no se sature al nivel
K

• Equilibrio Interior (x∗ > 0, y∗ > 0, z∗ > 0)

El equilibrio interior representa la coexistencia simul-
tánea de presa (z), mesopredador (y) y predador tope
(x). Para determinar las condiciones bajo las cuales di-
cho equilibrio existe y es biológicamente significativo,
se analizan las ecuaciones de equilibrio del sistema:

α1

(
γ1z2

a2
1 + z2

)
+α1

(
γ2y2

a2
2 + y2

)
−β1 = 0,

α2

(
γ3z

a3 + z

)
−
(

γ2y
a2

2 + y2

)
x−β2 = 0,

r
(

1− z
K

)
z−

(
γ1z2

a2
1 + z2

)
x−

(
γ3z

a3 + z

)
y = 0.

Debido a la presencia de términos funcionales satura-
dos y componentes no lineales de tipo Holling II y III,
el sistema no admite una solución analítica cerrada; sin
embargo, es posible obtener condiciones necesarias y
suficientes para garantizar la positividad de las tres po-
blaciones.

A partir de la primera ecuación de equilibrio se aísla el
término dependiente de y, lo que motiva la introducción
de la función auxiliar

D(z) =
β1

α1
− γ1z2

a2
1 + z2 .

Esta sustitución permite reescribir la condición de equi-
librio en la forma

γ2y2

a2
2 + y2 = D(z),
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donde la función del lado izquierdo pertenece al interva-
lo (0,γ2) para todo y> 0. En consecuencia, una solución
positiva y∗ existe si y sólo si

0 < D(z)< γ2,

lo que impone una primera restricción de factibilidad
para la coexistencia. Esta desigualdad implica, en parti-
cular, que debe cumplirse

γ1 >
β1

α1
− γ2,

condición necesaria, pero no suficiente, para la existen-
cia de un intervalo de valores de z compatibles con un
mesopredador persistente.

El segundo requisito proviene de la ecuación de equili-
brio del mesopredador, para la cual resulta conveniente
definir

E(z) = α2

(
γ3z

a3 + z

)
−β2.

Con esta notación, la expresión de equilibrio adopta la
forma (

γ2y
a2

2 + y2

)
x = E(z),

de modo que la existencia de un predador tope positivo
requiere que

E(z)> 0,

lo que se traduce en la restricción ecológica mínima

γ3 >
β2

α2
.

Esta condición garantiza que la tasa máxima de aprove-
chamiento del recurso por parte del mesopredador sea
suficiente para compensar su mortalidad intrínseca.

La tercera ecuación de equilibrio, correspondiente a la
dinámica de la presa, permite reducir el sistema a una
única ecuación escalar F(z) = 0 en la variable z, lue-
go de sustituir las expresiones de x(z) y y(z) deriva-
das de las relaciones anteriores. Dicha ecuación deter-
mina los posibles valores de z∗ en equilibrio. La exis-
tencia de un equilibrio interior biológicamente signifi-
cativo queda entonces supeditada a que la raíz positiva
z∗ de F(z) = 0 satisfaga simultáneamente las dos res-
tricciones fundamentales:

0 < D(z∗)< γ2 y E(z∗)> 0.

En conjunto, estas condiciones delimitan la región del
espacio paramétrico en la cual la coexistencia entre pre-
sa, mesopredador y predador tope es viable. Asimis-
mo, muestran explícitamente cómo las tasas de consu-
mo máximas, los parámetros de saturación y las tasas de
mortalidad condicionan la existencia del equilibrio inte-
rior, proporcionando una caracterización precisa de los
requisitos ecológicos que permiten la persistencia de las
tres especies en el sistema.

ANÁLISIS DE ESTABILIDAD

En esta sección se evalúan las condiciones de equilibrio
interpretando los valores de la soluciones de la ecuación ca-
racterísticas asociadas a la matriz Jacobiana evaluada en un
punto de equilibrio. Las soluciones que se evaluaron son la
solución trivial, las presas a capacidad de carga, la exclusión
del predador tope, la exclusión de mesopredador y el equili-
brio interior. La matriz Jacobiana del sistema en términos de
sus derivadas parciales correponde a:

J(x,y,z) =

∂x f1 ∂y f1 ∂z f1
∂x f2 ∂y f2 ∂z f2
∂x f3 ∂y f3 ∂z f3

 ,

donde las derivadas parciales del sistema se expresan como:

∂x f1 = α1

(
γ1z2

a2
1 + z2 +

γ2y2

a2
2 + y2

)
−β1,

∂y f1 = α1x
2γ2ya2

2

(a2
2 + y2)2 ,

∂z f1 = α1x
2γ1za2

1

(a2
1 + z2)2 ,

∂x f2 =− γ2y2

a2
2 + y2 ,

∂y f2 = α2
γ3z

a3 + z
−β2 − x

2γ2ya2
2

(a2
2 + y2)2 ,

∂z f2 = α2y
γ3a3

(a3 + z)2 ,

∂x f3 =− γ1z2

a2
1 + z2 ,

∂y f3 =− γ3z
a3 + z

,

∂z f3 = r
(

1− 2z
K

)
− x

2γ1za2
1

(a2
1 + z2)2 − y

γ3a3

(a3 + z)2 .

Evaluando estas expresiones en un punto de equilibrio
(x∗,y∗,z∗) se obtiene la matriz Jacobiana linealizada, deno-
tada por

J∗ = J(x∗,y∗,z∗).

El análisis de estabilidad se realiza a partir del polinomio
característico de J∗ y sus coeficientes, que serán tratados en
la subsección correspondiente mediante el criterio de Routh–
Hurwitz. En las secciones siguientes se estudia la estabilidad
de los distintos equilibrios del sistema: la solución trivial, la
presa a capacidad de carga, la exclusión del depredador tope
y la exclusión del mesodepredador.

SOLUCIÓN TRIVIAL

La matriz Jacobiana evaluada en el punto de equilibrio
(0,0,0) corresponde a:
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J(0,0,0) =

−β1 0 0
0 −β2 0
0 0 r


La ecuación característica asociada a esta matriz es:

(−β1 −λ )(−β2 −λ )(r−λ ) = 0

Por lo tanto, los valores propios son:

λ1 =−β1, λ2 =−β2, λ3 = r

Como al menos un λi tal que Re(λi) > 0, el equilibrio es
inestable.

PRESAS EN CAPACIDAD DE CARGA

Al evaluar el Jacobiano en el punto de equilibrio (0,0,K)
se obtiene:

J(0,0,K) =


α1 ·

γ1K2

a2
1 +K2 −β1 0 0

0 α2 ·
γ3K

a3 +K
−β2 0

− γ1K2

a2
1 +K2 − γ3K

a3 +K
−r


Con esto, la ecuación característica asociada a esta matriz

es:

(
α1 ·

γ1K2

a2
1 +K2 −β1 −λ

)(
α2 ·

γ3K
a3 +K

−β2 −λ

)
(−r−λ )= 0

Y sus respectivos valores propios son:

λ1 = α1 ·
γ1K2

a2
1 +K2 −β1, λ2 = α2 ·

γ3K
a3 +K

−β2, λ3 =−r

La estabilidad del punto de equilibrio depende del signo de
los valores propios. Si todos los valores propios tienen parte
real negativa, el punto es localmente asintóticamente estable.
Para que el punto (0,0,K) sea asintóticamente estable, se de-
ben cumplir las siguientes condiciones:

α1 ·
γ1K2

a2
1 +K2 < β1 (3)

α2 ·
γ3K

a3 +K
< β2 (4)

La Condición (3) asegura que la eficiencia trófica del pre-
dador tope sobre las presas no sea demasiado alta en compa-
ración con su tasa de mortalidad natural. La Condición (4),
establece que la eficiencia trófica del mesopredador también
debe ser inferior a su tasa de mortalidad natural.

EXTINCIÓN DEL PREDADOR TOPE

Este punto de equilibrio corresponde a E3 = (0,y∗,z∗),
donde el predador tope (x) está ausente y coexisten el me-
sopredador (y) y la presa (z). Para obtener la densidad de
equilibrio de la presa, z∗, se parte de la ecuación del meso-
predador y se impone la condición de equilibrio dy

dt = 0 bajo
el supuesto x = 0, lo que implica que

α2
γ3z∗

a3 + z∗
= β2

Para simplificar el análisis de E3, fue necesario definir el pa-
rámetro auxiliar:

u := α2γ3 −β2

Asegurar que z∗ se real y positivo implica la condición u > 0.
Despejando z∗, se obtiene:

z∗ =
a3β2

u

La densidad de equilibrio del mesopredador y∗ se obtiene de
la condición dz

dt = 0, con x = 0:

y∗ =
r(a3 + z∗)

γ3

(
1− z∗

K

)
Para la existencia de y∗ > 0, es necesaria la condición z∗ <K.

Definimos además las expresiones auxiliares:

A := z∗ =
a3β2

u
, B := y∗ =

r(a3 +A)
γ3

(
1− A

K

)
Evaluando la matriz Jacobiana en este punto se obtiene:

J∗ =


α1

(
γ1A2

a2
1 +A2 +

γ2B2

a2
2 +B2

)
−β1 0 0

− γ2B2

a2
2 +B2 0 α2Bγ3

a3

(a3 +A)2

− γ1A2

a2
1 +A2 − γ3A

a3 +A
r
(

1− 2A
K

)
−Bγ3

a3

(a3 +A)2


Dada las características de la matriz, es posible deducir un

valor propio directamente:

λ1 = α1

(
γ1A2

a2
1 +A2 +

γ2B2

a2
2 +B2

)
−β1

La estabilidad del equilibrio E3 requiere que λ1 < 0, lo cual
impide la recolonización del sistema por parte del predador
tope (x), ya que su tasa de ganancia neta es negativa en este
punto. Esta condición se traduce en la desigualdad:

β1

α1
>

γ1z∗2

a2
1 + z∗2 +

γ2y∗2

a2
2 + y∗2 (5)

La estabilidad del subsistema (y,z) se rige por las raíces
λ2,3 de la submatriz inferior derecha, cuya estabilidad se ana-
liza mediante el Criterio de Routh-Hurwitz. El polinomio ca-
racterístico de esta submatriz 2×2 es de la forma:

P(λ ) = λ
2 + τ1λ + τ2 = 0
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donde los coeficientes τ1 y τ2 (derivados de la traza y el de-
terminante de la submatriz Jacobiana) están dados por:

τ1 = Bγ3
a3

(a3 +A)2 − r
(

1− 2A
K

)
τ2 = α2Bγ

2
3 A

a3

(a3 +A)3

Aplicando el Criterio de Routh-Hurwitz, las condiciones
para que λ2,3 tengan parte real negativa son que ambos
coeficientes sean positivos (τ1,τ2 > 0).

Dado que todos los parámetros y las densidades A = z∗ y
B = y∗ son positivas, el coeficiente τ2 siempre es positivo
(τ2 > 0). Esto garantiza el cumplimiento de la primera
condición.

Por lo tanto, la estabilidad local del subsistema (y,z) queda
determinada únicamente por la segunda condición, τ1 > 0, la
cual asegura que λ2,3 tengan parte real negativa, es decir:

Bγ3
a3

(a3 +A)2 > r
(

1− 2A
K

)
(6)

El término de la izquierda en (6), representa la fuerza
estabilizadora. Esta expresión mide la presión reguladora
de la depredación ejercida por el mesopredador sobre la
presa. Cuanto mayor sea este valor, mayor será la capa-
cidad del mesopredador para amortiguar las fluctuaciones
poblacionales. Por otro lado, el término de la derecha en
(6), representa la fuerza desestabilizadora o el potencial de
crecimiento neto intrínseco de la presa. Este valor es positivo
cuando la densidad de la presa A es inferior a la mitad de su
capacidad de carga (A < K/2), lo que indica una alta tasa de
crecimiento intrínseca que tiende a impulsar el sistema fuera
del equilibrio (un factor común que conduce a oscilaciones
en modelos presa-depredador.

Este comportamiento refleja un equilibrio ecológico don-
de el subsistema (y,z) converge localmente a un estado esta-
cionario sin oscilaciones amplificadas, gracias a un balance
entre la productividad de la presa y la presión de depredación
del mesopredador.

EXTINCIÓN DEL MESOPREDADOR

Para el punto de equilibrio E4 = (x∗,0,z∗), donde el meso-
predador (y) está ausente y coexisten el predador tope (x) y la
presa (z). La densidad de equilibrio de la presa z∗ se obtiene
de la condición de equilibrio en la ecuación de x, dx

dt = 0, con
y = 0:

α1
γ1z∗2

a2
1 + z∗2 = β1

Para un análisis más simple de E4, se definió el parámetro
auxiliar:

v := α1γ1 −β1

Para que z∗ sea real y positivo, es indispensable la condición
v > 0. Despejando z∗, se obtiene:

z∗ =

√
β1a2

1
v

La densidad de equilibrio del predador tope x∗ se obtiene de
la condición dz

dt = 0, con y = 0:

x∗ =
α1r
β1

(
1− z∗

K

)
Para la existencia de x∗ > 0, es necesaria la condición z∗ <K.

Definimos además las expresiones auxiliares:

C := z∗ =

√
β1a2

1
v

, D := x∗ =
α1r
β1

(
1− C

K

)
La matriz Jacobiana J∗ evaluada en este punto

E4 = (D,0,C) cumple, por definición de z∗, que el ele-
mento J11 = 0. La matriz es:

J∗ =


0 0 α1Dγ1

2Ca2
1

(a2
1 +C2)2

0 α2
γ3C

a3 +C
−β2 0

− γ1C2

a2
1 +C2 − γ3C

a3 +C
r
(

1− 2C
K

)
−Dγ1

2Ca2
1

(a2
1 +C2)2


Notemos que el polinomio característico de J∗ es de la for-

ma:
P(λ ) = (τ0 −λ )

(
λ

2 + τ1λ + τ2
)
= 0

donde los coeficientes τ0, τ1 y τ2 están dados por:

τ0 = α2
γ3C

a3 +C
−β2 τ1 = Dγ1

2Ca2
1

(a2
1 +C2)2 − r

(
1− 2C

K

)

τ2 = α1Dγ
2
1C3 2a2

1

(a2
1 +C2)3

El primer valor propio es:

λ1 = J22 = α2
γ3C

a3 +C
−β2

Para que el equilibrio E4 sea localmente estable, se requiere
que λ1 < 0, lo que implica la condición de exclusión:

β2

α2
>

γ3z∗

a3 + z∗
(7)

Esta desigualdad asegura que la tasa de ganancia del
mesopredador (y) a partir de la presa (z∗) es insuficiente para
compensar su mortalidad β2, impidiendo su persistencia en
el sistema.
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Los otros dos valores propios corresponden a las raíces del
polinomio cuadrático, que relaciona las dinámicas del preda-
dor tope (x) y la presa (z):

λ
2 + τ1λ + τ2 = 0

Aplicando el Criterio de Routh-Hurwitz, las condiciones
para que λ2,3 tengan parte real negativa son que ambos
coeficientes sean positivos: τ1 > 0 y τ2 > 0.

Dado que todos los parámetros y las densidades C = z∗ y
D= x∗ son positivas, el coeficiente τ2 (el determinante) siem-
pre es positivo (τ2 > 0). Esto garantiza la primera condición.
La estabilidad local del subsistema (x,z) queda determinada
únicamente por la segunda condición, τ1 > 0, la cual asegura
que:

Dγ1
2Ca2

1

(a2
1 +C2)2 > r

(
1− 2C

K

)
(8)

Esta condición exige que la fuerza de amortiguación
generada por la depredación del predador tope (D = x∗)
sobre la presa (C = z∗) sea mayor que el potencial de
crecimiento neto de la presa.

La estabilidad local del equilibrio E4 depende directamen-
te de la configuración paramétrica del sistema. El equili-
brio es localmente estable si se satisfacen las condiciones
de existencia (v > 0 y z∗ < K), la exclusión del mesopreda-
dor (λ1 < 0), y la estabilidad del subsistema (x,z) (τ1 > 0 y
τ2 > 0). El cumplimiento de estas condiciones implica que la
dinámica conjunta de la presa (z) y el predador tope (x) tien-
de hacia un equilibrio sin oscilaciones crecientes, mientras el
mesopredador (y) es excluido del sistema.

ESTABILIDAD LOCAL DEL EQUILIBRIO INTERIOR

Sea (x∗,y∗,z∗) un punto de equilibrio estrictamente posi-
tivo de (1). El análisis de estabilidad local se realiza a partir
del Jacobiano del sistema. Sea J∗ = J(x∗,y∗,z∗) con entradas

J∗11 = α1

(
γ1(z∗)2

a2
1 +(z∗)2 +

γ2(y∗)2

a2
2 +(y∗)2

)
−β1,

J∗12 = α1x∗
2γ2y∗a2

2

(a2
2 +(y∗)2)2 , J∗13 = α1x∗

2γ1z∗a2
1

(a2
1 +(z∗)2)2 ,

J∗21 =− γ2(y∗)2

a2
2 +(y∗)2 ,

J∗22 = α2
γ3z∗

a3 + z∗
−β2 − x∗

2γ2y∗a2
2

(a2
2 +(y∗)2)2 ,

J∗23 = α2y∗
γ3a3

(a3 + z∗)2 ,

J∗31 =− γ1(z∗)2

a2
1 +(z∗)2 , J∗32 =− γ3z∗

a3 + z∗
,

J∗33 = r
(

1− 2z∗

K

)
− x∗

2γ1z∗a2
1

(a2
1 +(z∗)2)2 − y∗

γ3a3

(a3 + z∗)2 .

Para simplificar la expresión del Jacobiano evaluado en el
equilibrio interior (x∗,y∗,z∗), introducimos las funciones au-
xiliares

P =
γ1(z∗)2

a2
1 +(z∗)2 , Q =

γ2(y∗)2

a2
2 +(y∗)2 , S =

γ3z∗

a3 + z∗
,

y sus derivadas

Pz =
2γ1z∗a2

1

(a2
1 +(z∗)2)2 , Qy =

2γ2y∗a2
2

(a2
2 +(y∗)2)2 , Sz =

γ3a3

(a3 + z∗)2 .

Con esta notación las entradas del Jacobiano se escriben de
manera compacta como

J∗11 = α1(P+Q)−β1, J∗12 = α1x∗Qy,

J∗13 = α1x∗Pz, J∗21 =−Q,

J∗22 = α2S−β2 − x∗Qy, J∗23 = α2y∗Sz,

J∗31 =−P, J∗32 =−S,

J∗33 = r
(

1− 2z∗

K

)
− x∗Pz − y∗Sz.

A partir de estas expresiones, los coeficientes del po-
linomio característico λ 3 + τ1λ 2 + τ2λ + τ3 se obtienen
directamente.

Primer coeficiente

τ1 =−(J∗11 + J∗22 + J∗33)

es decir,

τ1 =−
[
α1(P+Q)−β1 +α2S−β2 − x∗Qy

+ r
(

1− 2z∗

K

)
− x∗Pz − y∗Sz

]
.
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Segundo coeficiente

τ2 = (J∗11J∗22−J∗12J∗21)+(J∗11J∗33−J∗13J∗31)+(J∗22J∗33−J∗23J∗32),

lo que conduce a la expresión

τ2 = (α1(P+Q)−β1)(α2S−β2 − x∗Qy)+α1x∗Qy Q

+(α1(P+Q)−β1)J∗33 +α1x∗Pz P

+(α2S−β2 − x∗Qy)J∗33 +α2y∗Sz S.

Tercer coeficiente.

τ3 =−det(J∗),

con

τ3 =−
[
J∗11(J

∗
22J∗33 − J∗23J∗32)− J∗12(J

∗
21J∗33 − J∗23J∗31)

+ J∗13(J
∗
21J∗32 − J∗22J∗31)

]
,

donde cada termino se construye en base a las definiciones
anteriores de P,Q,S,Pz,Qy,Sz.

Por tanto, las condiciones de Routh–Hurwitz escritas com-
pletamente en términos de las derivadas del Jacobiano eva-
luadas en (x∗,y∗,z∗) son:

τ1 > 0, τ2 > 0,τ3 > 0, τ1τ2 > τ3,

donde (τ1,τ2,τ3) se calculan con las fórmulas precedentes.

SIMULACIONES NUMÉRICAS

El estudio analítico se complementó mediante simula-
ciones numéricas que permiten describir de manera directa
la dinámica temporal del sistema al variar la capacidad de
carga K, entendida como un indicador de la productividad
del recurso basal.

Los parámetros utilizados para las simulaciones fue-
ron: r = 1,0; α1 = 0,2; γ1 = 0,6; γ2 = 0,9; β1 = 0,10;
a1 = 5; a2 = 15; α2 = 0,4; γ3 = 0,5, β2 = 0,05 y a3 = 5,
mientras que las condiciones iniciales corresponden a
(x0,y0,z0) = (1,1,30).

Las simulaciones se llevaron a cabo en el lenguaje R uti-
lizando las librerías deSolve y ggplot2 (Wickham, 2016).
En todos los casos se emplearon los mismos parámetros y
condiciones iniciales, y el intervalo de integración numé-
rica fue establecido en t = 600, lo que permitió identificar
con claridad el comportamiento asintótico de las trayectorias.

La Figura 1 presenta los resultados de las simulaciones
para diversos valores de K. A partir de estas se identifican
los siguientes regímenes cualitativos:

• K = 1: Extinción de los predadores y presa en capa-
cidad de carga. Para valores muy bajos de K, la dispo-
nibilidad de recurso es insuficiente para sostener a los

niveles superiores. Tanto el mesopredador como el pre-
dador tope declinan rápidamente hacia cero, mientras
que la presa converge a su capacidad de carga. El re-
sultado concuerda con la teoría: con baja productividad,
las respuestas funcionales saturadas no permiten soste-
ner a los predadores, que se extinguen mientras la presa
se estabiliza.

• K = 5 y K = 10: Persistencia del mesopredador y ex-
tinción del predador tope. En niveles intermedios de
productividad, el mesopredador logra mantenerse, pe-
ro el predador tope no alcanza densidades positivas. El
sistema converge a un equilibrio estable de dos niveles
tróficos (0,y∗,z∗), donde el mesopredador y la presa co-
existen con valores constantes en el tiempo.

• K = 15, K = 20 y K = 25: Coexistencia estable de las
tres especies. Para valores moderadamente altos de K,
el recurso disponible permite la presencia sostenida de
las tres poblaciones. Las trayectorias convergen hacia
un equilibrio interior estable (x∗,y∗,z∗), sin exhibir os-
cilaciones apreciables. En este régimen, la interacción
tritrófica se estabiliza y las fluctuaciones son fuertemen-
te amortiguadas.

• K = 30 y K = 40: Oscilaciones persistentes. Para va-
lores altos de K, el sistema ya no converge a un punto
fijo. En cambio, se observa numéricamente un compor-
tamiento oscilatorio sostenido, compatible con la pre-
sencia de un ciclo límite. El aumento de la capacidad
de carga intensifica la retroalimentación trófica y genera
ciclos de mayor amplitud, un comportamiento típico de
sistemas altamente productivos. Este fenómeno es con-
sistente con predicciones clásicas en sistemas tritrófi-
cos, donde una mayor disponibilidad de recursos tiende
a desestabilizar las interacciones predador–presa (Ro-
senzweig, 1971; Hastings and Powell, 1991).

Las simulaciones numéricas revelan que la capacidad de
carga K actúa como un determinante clave del comporta-
miento dinámico, dando lugar a una transición desde la extin-
ción de los niveles superiores en ambientes pobres, pasando
por una región de coexistencia estable, hasta regímenes osci-
latorios persistentes en ambientes altamente productivos.

DISCUSIÓN Y APLICACIONES

Los resultados de este estudio ofrecen una base teórica
para entender cómo la estructura de las interacciones tróficas
influye en la persistencia o exclusión de especies dentro de
comunidades con competencia intragremial. En particular,
el mesopredador se muestra como el componente más
vulnerable, especialmente cuando enfrenta simultáneamente
presión por parte del predador dominante y una disponi-
bilidad limitada de presas. Este patrón ha sido observado
en diversos ecosistemas, donde grandes carnívoros reducen
la abundancia o restringen el rango de mesopredadores
mediante competencia o interferencia directa (Palomares
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Figura 1: Series de tiempo del modelo tritrófico para distintos valores de la capacidad de carga K.

and Caro, 1999; Roemer et al., 2009). Un estudio previo
(Mejías, 2023), en donde se analizó numéricamente un
modelo de similares características, no se lograron generar
simulaciones sin que ocurriera exclusión competitiva de
alguno de los predadores. Esto último, evidencia las comple-
jidades de mantener un equilibrio interior en el sistema.

Además de esta dimensión estructural, es importante
considerar el rol funcional de los predadores tope como
reguladores de las poblaciones de presas. Tal como señala
Rumiz (2010), los carnívoros cumplen una función de con-
trol biológico que mantiene el equilibrio en las comunidades
tróficas. La pérdida de este control puede desencadenar
ciclos de plagas y procesos de sobre consumo, afectando
la regeneración vegetal y la biodiversidad local. Se ha
reportado que estas alteraciones pueden incluso provocar
extinciones locales de especies de plantas y animales (Ríos,
2009).

Comprender estas dinámicas resulta esencial para el
diseño de estrategias de conservación, ya que la desaparición
del mesopredador o del predador tope puede generar efectos
en cascada que alteren tanto las poblaciones de presas como
los procesos ecológicos asociados (Prugh et al., 2009).
Además, en paisajes fragmentados o sometidos a presión
antrópica, estas relaciones se vuelven aún más inestables,

incrementando el riesgo de extinción local de especies
subordinadas (Newsome et al., 2017).

El análisis de estabilidad local, utilizando el Criterio
de Routh-Hurwitz para manejar la complejidad algebraica
de los polinomios característicos, proporciona una visión
detallada de los mecanismos que gobiernan la persistencia
y la exclusión de las especies en el modelo tritrófico. Los
resultados teóricos obtenidos, en particular las condiciones
sobre los polinomios característicos, ofrecen una interpreta-
ción clara sobre el amortiguamiento dinámico y los umbrales
de persistencia.

Desde una perspectiva aplicada, las condiciones de
estabilidad y viabilidad identificadas en este modelo pueden
emplearse como indicadores para evaluar la resiliencia
ecológica de sistemas naturales. Así, modelos tritróficos
con competencia interespecífica ofrecen una herramienta
útil para anticipar escenarios críticos y orientar decisiones
de manejo como la reintroducción de predadores tope o la
regulación de especies clave en áreas de conservación o
restauración ecológica.

En este contexto, la capacidad de carga de las presas (K)
actúa como un parámetro clave, cuya variación puede des-
encadenar cambios cualitativos en la dinámica del sistema y
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determinar umbrales críticos de invasibilidad y coexistencia.
En el estudio de (Escobar, 2009) se presentan varios modelos
que destacan la capacidad de carga como un factor limitante
para la existencia de soluciones interiores.

CONCLUSIONES

Este trabajo presenta un modelo tritrófico que describe
interacciones ecológicas complejas entre una presa, un
predador dominante y un mesopredador, considerando me-
canismos como la depredación intragremial, la competencia
interespecífica y respuestas funcionales mixtas. El análisis
de estabilidad local revela que la coexistencia de las tres
especies solo se sostiene bajo combinaciones específicas de
parámetros, principalmente relacionados con la eficiencia
trófica, las tasas de mortalidad y la capacidad de carga del
recurso basal.

El modelo presenta una alta complejidad técnica por la
cantidad de parámetros involucrados y las no linealidades
que dificultan el análisis algebraico directo, requiriendo
estrategias numéricas para su exploración. No obstante,
esta complejidad permite capturar de forma más realista
las dinámicas entre especies que compiten y se depredan
mutuamente.

A partir de la aplicación sistemática del Teorema de
Hartman-Grobman y el Criterio de Routh-Hurwitz, se
establecieron las condiciones paramétricas necesarias y
suficientes para la estabilidad de los equilibrios definidos. El
análisis teórico demostró que la estabilidad de los subsiste-
mas de coexistencia queda supeditada a condiciones donde
la fuerza reguladora de la depredación debe ser superior al
potencial de crecimiento neto desestabilizador de la presa en
su densidad de equilibrio. Asimismo, se definieron umbrales
de exclusión y se identificaron puntos de transición que
marcan las condiciones exactas bajo las cuales una nueva
especie puede emerger o ser permanentemente excluida.

Las simulaciones numéricas mostraron que la capa-
cidad de carga de las presas desempeña un rol central
en la regulación y estabilidad del sistema tritrófico. Este
comportamiento concuerda con los patrones reportados
en la literatura, que destacan la importancia de la produc-
tividad basal en la dinámica de comunidades predador–presa.

Este estudio constituye un aporte a la comprensión de có-
mo operan las relaciones interespecíficas en sistemas tróficos
más allá del esquema clásico presa–predador, ofreciendo un
marco teórico para reflexionar sobre las condiciones que pro-
mueven la coexistencia o llevan a la exclusión de especies en
comunidades con múltiples niveles de interacción.
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ABSTRACT

Intraguild predation (IGP) arises when two consumer species exploit the same resource and also interact through predation.
Classical models of IGP typically include three dynamical variables and describe the resource explicitly. Here we introduce a
reduced predator-prey model in which both species depend on a shared resource that is not modeled directly. Instead, resource
use is represented through reciprocal reductions of carrying capacities, which captures the main mechanisms of IGP in a two
dimensional system that remains analytically tractable. The model exhibits extinction equilibrium, exclusion equilibrium,
and up to two coexistence equilibrium. We show that at most one of the coexistence equilibrium is locally stable. These out-
comes depend on the balance between prey reproduction and the combined effects of predation and exploitative competition.
Prey extinction occurs when its reproductive potential is lower than these antagonistic pressures, while coexistence becomes
possible when reproduction is sufficiently high. The analysis also reveals that no local oscillations can arise, which suggests
that exploitative competition has a stabilizing effect on the system. This reduced formulation provides a compact mechanistic
framework for studying IGP when resource dynamics are assumed constant or secondary. It also serves as a useful basis for
extending classical models and examining how asymmetric resource use influences species coexistence or exclusion.

Keywords:

Predator prey dynamics, Intraguild predation, Exploitative competition, Two dimensional models, Local stability, Saddle
node bifurcation

RESUMEN

La depredación intragremial ocurre cuando dos especies consumidoras explotan un mismo recurso y además interactúan
mediante depredación. Los modelos clásicos de depredación intragremial suelen incluir tres variables dinámicas y describir
explícitamente el recurso. Aquí introducimos un modelo reducido de depredador–presa en el cual ambas especies dependen
de un recurso compartido que no se modela directamente; su efecto se incorpora mediante reducciones recíprocas en las
capacidades de carga, capturando los mecanismos esenciales de la depredación intragremial en un sistema bidimensional. El
modelo presenta equilibrios de extinción, exclusión y por lo menos dos equilibrios de coexistencia, de los cuales a lo sumo
uno puede ser localmente estable. Estos resultados dependen de la relación entre la reproducción de la presa y los efectos
combinados de la depredación y la competencia por explotación. La presa se extingue cuando su capacidad reproductiva es
insuficiente frente a estas presiones, mientras que la coexistencia surge cuando la reproducción es suficientemente alta. El
análisis también demuestra que no aparecen oscilaciones locales, lo que indica un efecto estabilizador de la competencia por
explotación. Esta formulación ofrece un marco para analizar la depredación intragremial cuando la dinámica del recurso se
considera constante o secundaria, y sirve como base para extender modelos clásicos y analizar cómo el uso asimétrico del
recurso afecta la coexistencia o exclusión de especies.

Palabras Claves:

Dinámica depredador-presa, Depredación intragremial, Competencia por explotación, Modelos bidimensionales, Estabilidad
local, Bifurcación silla–nodo
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INTRODUCTION

P redation and competition have been extensively stud-
ied in ecology, in part because they constitute the ba-

sic components of communities Holt and Polis (1997); Bod-
ini (1991). These interactions were mathematically enunci-
ated in the 1920s by Lotka and Volterra. They independently
proposed a model to describe the relationship between two
species sharing the same resource and then shifted their at-
tention from competition to the effects of predation on pop-
ulation growth Smith et al. (1998). Predation has been stud-
ied by considering different functional responses, most no-
tably Holling type I, II, and III Holling (1965); Tian and Xu
(2011); Chan et al. (2017); Sarkar et al. (2020). Competition
has two main approaches: interference and exploitative com-
petition Nguyen-Ngoc and Nguyen-Phuong (2016). Inter-
ference competition occurs when individuals of one species
are equivalent to a certain number of individuals of another
species. Exploitative competition occurs when the use of the
resource by one species reduces the capacity of the environ-
ment to support another species by acting on its carrying ca-
pacity Jensen (1987).

Intraguild predation is an interaction of competition and
predation where two species involved in a predator-prey re-
lationship also compete for a shared resource Arim and Mar-
quet (2004). Generally, three species are involved in math-
ematical models corresponding to predator, prey, and shared
resource. For example, in Kang and Wedekin (2013), they
formulate two models of intraguild predation. One has the
specialized predator and the other generalist. They found that
the model with the generalist predator is more prone to coex-
istence. In Capone et al. (2018), they propose an intraguild
model in which the carrying capacity of the prey and the
predator is proportional to the biotic resource. They estab-
lish different exclusion and coexistence regimes of the popu-
lations. In Sen et al. (2018), they propose a model in which
the predator and the prey compete to remain in the commu-
nity, and they observe two types of coexistence: steady-state
coexistence and oscillatory coexistence.

Intraguild predation is a particular type of omnivory,
which is defined as feeding on more than one trophic level in
the food chain model Sen et al. (2018). According to Hunter
(2009), omnivores are generalists that evolve in response to a
trade-off between food quality and quantity. A typical exam-
ple of omnivorous animals are ants that consume animal tis-
sue, seeds, and plants Hunter (2009). In relation to intraguild
models of predation mentioned previously an example of an
omnivorous predator, a herbivorous prey and a resource for
which they compete for exploitation can be found in the pe-
riphyton and freshwater amphipods (Crustacea) of the genus
Hyalella. In this case, Hyalella curvispina would be an om-
nivorous predator that feeds on periphyton, but if the algal
food supply is low, H. curvispina consumes Hyalella pseu-
doazteca , which would be an herbivorous prey, since it only
eats algae, so the resource they compete to exploit would cor-
respond to periphyton Casset et al. (2001); Carusela et al.
(2009). Another example, is found in species inhabiting

the Antarctic Ocean. Antartic krill Euphausia superba is
the main food for Antarctic Fur Seals Arctocephalus gazella
and fishes Champsocephalus gunnari, but A. gazella also eat
fishes C. gunnari Doidge and Croxall (1985); Ibáñez (2005).

In this paper, we are interested in developing and ana-
lyzing a mathematical model that maintains the simplicity
of the Lotka–Volterra framework of two ordinary differen-
tial equations, while allowing us to study the population dy-
namics of a predator and a prey competing for the same re-
source. Beyond mathematical convenience, dimensional re-
duction allows for the analytical exploration of ecological
systems in which resource dynamics operate on faster time
scales or remain approximately constant. This approach pre-
serves the fundamental mechanisms of intraguild predation
and exploitative competition, without the need to explicitly
incorporate resource dynamics.

For example, this framework can represent an herbivore
and an omnivore competing for a primary producer. To
achieve this, we include exploitative competition in a two-
dimensional model rather than explicitly modeling a three-
variable system with separate equations for the predator, the
prey, and the shared resource. In our model, the resource for
which predator and prey compete is implicit; therefore, the
equivalent representation in a three-variable formulation cor-
responds to equilibrium at which the resource remains pos-
itive. With this model, we address the following question:
what are the population dynamics of a predator–prey system
subject to exploitative competition?

Our analysis shows that the reduced system captures the
main dynamical outcomes expected in intraguild interac-
tions. The model admits extinction, exclusion, and coexis-
tence states, with at most one coexistence equilibrium be-
ing locally stable. Because the trace of the Jacobian at
any interior equilibrium is always negative, stability depends
solely on the determinant, and no Hopf bifurcations or os-
cillatory coexistence can arise. A saddle–node bifurcation
separates parameter regions where positive coexistence equi-
librium persist from those where coexistence is lost. Eco-
logically, the analysis reveals two contrasting regimes, when
prey reproduction exceeds the predation pressure exerted at
the predator carrying capacity, stable coexistence is possible,
otherwise, the prey is excluded. Asymmetries in resource ex-
ploitation further determine which species dominates at equi-
librium.

THE MODEL

We developed a predator–prey model in which both species
compete for a shared limiting resource. The formulation re-
lies on the following assumptions:

i. The biological system consists of two state variables:
the prey population N1 and the predator population N2.
Each population experiences gains and losses deter-
mined by birth, predation, and competition for resource
exploitation.

ii. In the absence of predators, the prey population N1 fol-
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lows logistic growth with intrinsic growth rate r1 and
carrying capacity k1.

iii. The predator exhibits a generalist feeding strategy.
Thus, even when the focal prey N1 is absent, the preda-
tor population N2 follows logistic growth with intrinsic
rate r2 and carrying capacity k2.

iv. Because both species exploit the same underlying re-
source, interspecific competition affects their carrying
capacities. Specifically, the effective carrying capacity
of N1 decreases by η1N2, where η1 represents the per
capita resource requirement of the predator relative to
the prey’s carrying capacity. Symmetrically, the carry-
ing capacity of N2 decreases by η2N1.

v. Predation follows a Holling type I functional response.
The parameter p denotes the predation efficiency, while
ε represents the conversion efficiency by which con-
sumed prey biomass (pN1) contributes to predator
biomass production (ε pN1).

A conceptual representation of the ecological interactions
described by assumptions (i)–(v) is shown in Fig. 1.

Figure 1: Conceptual diagram of the predator–prey system with
exploitative competition mediated by a shared resource. The prey
(N1) and the predator (N2) interact through direct predation, while

both species depend on a common resource that is treated
implicitly in the model. Resource availability limits the effective

carrying capacities of both populations, generating indirect
exploitative competition between prey and predator.

Under these assumptions, the dynamics are described by
the system

dN1

dt
= r1N1

(
1− N1

k1 −η1N2

)
− pN1N2,

dN2

dt
= r2N2

(
1− N2

k2 −η2N1

)
+ ε pN1N2,

(1)

with (N1,N2) confined to the biologically feasible region

Ω =

{
(N1,N2) ∈ R2

+ : N1 <
k2

η2
, N2 <

k1

η1

}
,

and all parameters r1,r2,k1,k2,η1,η2, p,ε are strictly posi-
tive (see Table 1).
Table 1: Ecological interpretation and units of the model pa-
rameters.

Par. Ecological meaning Units
r1 Intrinsic growth rate of the prey time−1

r2 Intrinsic growth rate of the
predator

time−1

k1 Effective carrying capacity of
the prey

density

k2 Effective carrying capacity of
the predator

density

p Predation rate on the prey time−1

m Predator mortality rate time−1

η1 Strength of exploitative compe-
tition exerted by the predator on
the prey

dimensionless

η2 Strength of exploitative compe-
tition exerted by the prey on the
predator

dimensionless

Theorem 1 All solutions of system (1) initiated in R2
+ are

uniformly bounded.

Proof Define the auxiliary function

w = εN1 +N2. (2)

Solutions of (1) satisfy

N1 <
k2

η2
and N2 <

k1

η1
. (3)

Differentiating (2) along trajectories of (1), we obtain

dw
dt

= εr1N1

(
1− N1

k1 −η1N2

)
+ r2N2

(
1− N2

k2 −η2N1

)
≤ rw− r

(
εN2

1
k1 −η1N2

+
N2

2
k2 −η2N1

)
,

where r = max{r1,r2}. Using the bounds in (3),

dw
dt

≤ rw− r
(

εN2
1

k1
+

N2
2

k2

)
≤ rw− r

(
εN2

1
k

+
N2

2
k

)
,

where k = max{εk1,k2}. Since

εN1 +N2 = w, εN2
1 +N2

2 ≥ w2

2
,

we obtain the simplified inequality

dw
dt

≤ rw
(

1− w
k

)
.

Integrating this logistic-type inequality yields

w(t)≤
[(

1
w(0)

− 1
k

e−rt
)
+

1
k

]−1

.
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Thus, limsupt→∞ w(t) ≤ k, which implies that every trajec-
tory eventually enters and remains within the compact region

Ω =

{
(N1,N2) ∈ R2

+ : N1 <
k2

η2
, N2 <

k1

η1
, εN1 +N2 ≤ k

}
.

This proves uniform boundedness of all solutions. □

Note 1 For N1(0) > 0 and N2(0) > 0, the positive quadrant
is forward invariant because the right-hand side of system (1)
vanishes on the coordinate axes. Thus population densities
remain non-negative for all t > 0.

RESULTS

From model (1), we obtain four equilibrium points Ei repre-
senting different biological situations:

1. The trivial equilibrium E0 = (0,0), extinction of both
species.

2. The axial equilibrium Ek1 = (k1,0), only the prey at its
carrying capacity.

3. The axial equilibrium Ek2 = (0,k2), only the predator at
its carrying capacity.

4. The interior (coexistence) equilibrium E∗ = (N1,N2),
where both species coexist.

To explicitly characterize the coexistence equilibrium E∗,
we assume N1 ̸= 0 and N2 ̸= 0 and solve

r1

(
1− N1

k1 −η1N2

)
− pN2 = 0, (4)

r2

(
1− N2

k2 −η2N1

)
+ ε pN1 = 0. (5)

From (4) we obtain

N1 =
(r1 − pN2)(k1 −η1N2)

r1
, (6)

and substituting this expression into (5) yields a quartic poly-
nomial in N2 of the form

b4N4
2 +b3N3

2 +b2N2
2 +b1N2 +b0 = 0,

where

b4 = ε p3
η

2
1 η2,

b3 =−
(
2ε p3

η1η2k1 +2ε p2
η

2
1 η2r1

)
,

b2 = ε p3
η2k2

1 +4ε p2
η1η2k1r1 + ε pη

2
1 η2r2

1 − ε p2
η1k2r1

+ pη1η2r1r2,

b1 =−2ε p2
η2k2

1r1 −2ε pη1η2k1r2
1 + ε p2k1k2r1

+ ε pη1k2r2
1 − pη2k1r1r2 −η1η2r2

1r2 + r2
1r2,

b0 = ε pη2k2
1r2

1 − ε pk1k2r2
1 +η2k1r2

1r2 − k2r2
1r2.

We note that b4 > 0 and b3 < 0, so the polynomial exhibits
at least one sign change. By Descartes’ rule of signs, it has
at least one positive root. Therefore, there exists at least one
interior equilibrium E∗ with ecological meaning.

LOCAL STABILITY OF BOUNDARY EQUILIBRIA

To analyze the stability of the equilibria Eki with i ∈ {1,2},
we first compute the Jacobian matrix associated with the
linearization of system (1) at a generic equilibrium point
E = (N1,N2), which is denoted by J(E)

r1

(
1− 2N1

k1 −η1N2

)
− pN2 −

r1η1N2
1

(k1 −η1N2)2 − pN1

−
r2η2N2

2
(k2 −η2N1)2 + ε pN2 r2

(
1− 2N2

k2 −η2N1

)
+ ε pN1

 .

Evaluating at the trivial equilibrium E0 = (0,0), we obtain

J(E0) =

(
r1 0
0 r2

)
,

whose eigenvalues are λ1 = r1 and λ2 = r2. Since both are
positive, E0 is unstable.

At the axial equilibrium Ek1 = (k1,0) we have

J(Ek1) =

(
−r1 −pk1 −η1r1

0 ε pk1 + r2

)
,

with eigenvalues λ1 =−r1 and λ2 = ε pk1 + r2 > 0, so Ek1 is
also unstable.

Proposition 1 (Local stability of the predator-only equi-
librium) The axial equilibrium Ek2 = (0,k2) satisfies the fol-
lowing:

• It is locally asymptotically stable if r1 < pk2,

• It is non-hyperbolic if r1 = pk2,

• It is unstable if r1 > pk2.

Proof The Jacobian at Ek2 is

J(Ek2) =

(
r1 − pk2 0

ε pk2 −η2r2 −r2

)
,

whose eigenvalues are

λ1 = r1 − pk2, λ2 =−r2 < 0.

Thus the sign of λ1 determines the stability of Ek2 , giving the
three cases above. □

Ecologically, the condition r1 < pk2 indicates that the pre-
dation pressure exerted by the predator at its carrying ca-
pacity is sufficiently strong to prevent the prey from invad-
ing the system. In this case, the predator-only equilibrium
persists because prey growth cannot compensate for losses
due to predation. Conversely, when r1 > pk2, the prey has a
net positive growth even in the presence of maximal preda-
tor density, allowing it to invade and rendering the predator-
only state unstable. The case r1 = pk2 represents an invasion
threshold separating these two ecological regimes.
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LOCAL STABILITY OF THE COEXISTENCE EQUILIB-
RIUM

The interior equilibrium E∗ of system (1) represents coex-
istence of both species. Although its coordinates cannot be
expressed in closed form, its local stability properties can be
analyzed through the Jacobian matrix, complemented by nu-
merical exploration of the parameter space.

Proposition 2 (Sign of the trace) Let E∗ = (N1,N2) be any
interior equilibrium in the feasible region, i.e. N1 > 0, N2 >
0, k1 −η1N2 > 0 and k2 −η2N1 > 0. Then the trace of the
Jacobian at E∗ satisfies

trJ(E∗) =− r1N1

k1 −η1N2
− r2N2

k2 −η2N1
< 0.

Proof Evaluating the Jacobian at E∗ gives − r1N1

k1 −η1N2
N1

(
− r1η1N1

(k1 −η1N2)2 − p
)

N2

(
ε p− r2η2N2

(k2 −η2N1)2

)
− r2N2

k2 −η2N1

 .

All quantities ri, Ni, and the denominators (ki −ηiN j) are
positive in the feasible region, hence both diagonal entries
are negative and the trace is strictly negative. □

Note 2 (Absence of Hopf bifurcations) Because trJ(E∗) is
strictly negative for all feasible interior equilibrium, the real
part of the eigenvalues can never vanish while detJ(E∗) >
0. Therefore, no Hopf bifurcation can occur at an interior
equilibrium of system (1), and limit cycles cannot originate
locally from E∗.

Theorem 2 Let E∗ = (N1,N2) be any interior equilibrium of
system (1) in the feasible region. If detJ(E∗)> 0, then E∗ is
locally asymptotically stable.

Proof Since trJ(E∗) < 0 for all feasible interior equilibrium
(Proposition 2), the condition detJ(E∗)> 0 implies that both
eigenvalues of J(E∗) have negative real part. Thus, E∗ is
locally asymptotically stable. □

Note 3 Let E∗ = (N1,N2) be an interior equilibrium of sys-
tem (1) in the feasible region and define

A = k1 −η1N2, B = k2 −η2N1.

Then the determinant of the Jacobian at E∗ can be written as

detJ(E∗) = N1N2

[
r1r2

AB
+ ε p2 + ε p

r1η1N1

A2

− pr2η2N2

B2 − r1r2η1η2N1N2

A2B2

]
,

(7)

where A > 0 and B > 0 in the feasible region.

The analysis above shows that interior equilibrium may be
either locally asymptotically stable or of saddle type, depend-
ing solely on the sign of detJ(E∗). Along the curve where
detJ(E∗) = 0, the equilibrium becomes non-hyperbolic, and
numerical continuation in the (η1,η2)-plane (Figs. 2–4) re-
veals that this curve corresponds to the collision and disap-
pearance of two interior equilibria. This behaviour is charac-
teristic of a saddle–node bifurcation. To formalize this obser-
vation, and connect the numerical bifurcation diagram with
the underlying mathematical structure of system (1), we state
the following theorem.

Theorem 3 (Saddle–node bifurcation of interior equilib-
rium) Let θ = (η1,η2) denote the pair of exploitation pa-
rameters, and consider system (1) as a one-parameter family
with respect to η1, keeping all remaining parameters fixed.

Assume that there exist η∗
1 and an interior equilibrium

E∗ = (N∗
1 ,N

∗
2 ) in the feasible region such that:

(H1) F(E∗,η∗
1 )= 0, where F =(F1,F2) is the right-hand side

of system (1);

(H2) detJ(E∗,η∗
1 ) = 0 and trJ(E∗,η∗

1 )< 0, so that J(E∗,η∗
1 )

has a simple zero eigenvalue and one strictly negative
eigenvalue;

(H3) Let v and w be the right and left eigenvectors associated
with the zero eigenvalue. Then the nondegeneracy and
transversality conditions

w⊤Fη1(E
∗,η∗

1 ) ̸= 0, w⊤D2F(E∗,η∗
1 )[v,v] ̸= 0

hold.

Then system (1) undergoes a generic saddle–node bifurca-
tion of interior equilibrium at (E∗,η∗

1 ). For η1 on one side
of η∗

1 there exist exactly two interior equilibria (one stable
and one saddle), whereas for η1 on the other side no interior
equilibria exist.

Proof Under (H1) and (H2), the linearization J(E∗,η∗
1 ) has

a simple zero eigenvalue and a negative eigenvalue, so the
center manifold is one-dimensional. Conditions (H3) en-
sure nondegeneracy of the unfolding. Standard saddle–node
theory (e.g., Sotomayor’s theorem; Kuznetsov et al. (1998);
Guckenheimer and Holmes (2013)) implies that the reduced
dynamics on the center manifold is locally equivalent to

ż = α(η1 −η
∗
1 )+β z2 +O

(
|z|3 + |η1 −η

∗
1 | |z|

)
,

with αβ ̸= 0. This is the normal form of a saddle–node bi-
furcation, yielding the stated conclusions. □

In summary, interior equilibria in system (1) cannot gener-
ate oscillatory coexistence through a Hopf mechanism, since
their Jacobian trace is always strictly negative. Local stabil-
ity is determined solely by the sign of the determinant: equi-
librium with detJ(E∗) > 0 are locally asymptotically stable,
whereas those with detJ(E∗)< 0 are saddles. The transition
between these regimes occurs along the saddle–node curve
detJ(E∗) = 0, which explains the appearance and disappear-
ance of coexistence states observed in the (η1,η2) parameter
space.
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COEXISTENCE-FAVOURING REGIME: r1 > pk2

We now investigate how the qualitative dynamics of sys-
tem (1) vary across the (η1,η2) parameter space. These
parameters control how strongly each species reduces the
other’s effective carrying capacity, and therefore the (η1,η2)-
plane captures how asymmetries in resource exploitation
govern coexistence, exclusion, and the emergence of saddle-
type interior equilibrium.

First, consider the case in which the exclusion equilibrium
(0,k2) is unstable, i.e. r1 > pk2, a condition that favours the
existence of a stable coexistence equilibrium.

We fix r1 = 1.2, r2 = 0.6, k1 = 200, k2 = 100, p=
0.01, ε = 0.1, and treat η1 and η2 as bifurcation parame-
ters. In the (η1,η2)-plane we distinguish three regions in
which the system displays qualitatively different dynamics
(Fig. 2(a)).
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Figure 2: Potential dynamics of model (1). (a) Bifurcation
structure in the (η1,η2)-plane. The red line T marks the loss of
feasibility of E2, and the grey curve SN denotes the saddle–node

locus where two interior equilibria collide and disappear.
Regions I–III correspond to qualitatively distinct dynamical

regimes. Parameter values: r1 = 1.2, r2 = 0.6, k1 = 200, k2 = 100,
p = 0.01, ε = 0.1. (b)–(d) Phase portraits illustrating the dynamics

in regions I, II and III for (η1,η2) = (1.2,0.4), (1.2,0.6) and
(1.2,0.9), respectively. In region I, a single stable coexistence
equilibrium E∗ attracts all trajectories. In region II, the stable

coexistence equilibrium coexists with a saddle E2. In region III,
both interior equilibria are lost and coexistence is no longer

possible.

We begin our description in region III, where the system
admits no interior equilibria. In this region, the feasible
quadrant contains no stable equilibrium, and coexistence of
both species is not possible (Fig. 2(d)).

Crossing the gray curve SN from region III into region II
generates two interior equilibria through a saddle–node bi-
furcation: a locally asymptotically stable equilibrium E1 and
a saddle equilibrium E2 (Fig. 2(c)). Ecologically, E1 repre-
sents a feasible coexistence state in which both species per-

sist, whereas E2 is unstable and therefore biologically irrele-
vant.

The red curve T marks the feasibility boundary: the axial
equilibrium Ek1 becomes unfeasible when N1 < k2/η2, and
the interior saddle E2 also turns unfeasible as one component
becomes negative. Above T , neither Ek1 nor E2 is feasible,
whereas below it both lie in the feasible quadrant. Therefore,
in region I the system admits four equilibria (E0, Ek1 , Ek2 ,
and E1). Among them, E1 is the unique interior equilibrium
and is locally asymptotically stable (Fig. 2(b)), correspond-
ing biologically to a regime of robust coexistence in which
both species persist despite predation pressure and competi-
tion for a shared resource.
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Figure 3: Coexistence regions in the (η1,η2) parameter space. (a)
Bifurcation diagram showing how the black line η1 = η2 intersects

four qualitatively distinct subregions (I.a, I.b, II.a and II.b). The
red line marks the feasibility boundary for Ek1 , and the gray curves

correspond to saddle–node collisions of interior equilibrium.
Panels (b)–(e) display the temporal dynamics of prey and predator

densities at representative points in each subregion: (b)
(η1,η2) = (0.1,0.3) (region I.a), (c) (0.4,0.4) (region I.b), (d)
(0.52,0.55) (region II.a), and (e) (1.2,0.55) (region II.b). These
simulations illustrate how asymmetries in resource exploitation
govern whether prey or predator dominates at equilibrium. All

fixed parameter values are the same as in Fig. 2.
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Since regions I and II both admit a stable coexistence equi-
librium E∗ = E1, we next explore how equilibrium densities
change across these regions. To this end, we consider points
along the line η1 = η2, which partitions the coexistence do-
main into four subregions (Fig. 3(a)).

In subregions I.a and I.b, the predator density always ex-
ceeds the prey density at equilibrium. In region I.a, where
η2 > η1, the predator surplus over the prey is moderate
(Fig. 3(b)), whereas in region I.b, where η1 > η2, the differ-
ence between predator and prey densities is larger (Fig. 3(c)).
In contrast, in region II.a the prey density exceeds the preda-
tor density (Fig. 3(d)), while in region II.b the predator again
dominates (Fig. 3(e)). In summary, when η1 > η2 the preda-
tor population tends to exceed the prey population. When
η1 < η2, the prey can dominate numerically, or the species’
densities remain relatively similar.

REGIME ALLOWING PREDATOR EXCLUSION OF THE
PREY: r1 < pk2

We now consider the second case, in which the exclu-
sion equilibrium (0,k2) is locally stable. We fix r1 =
1.2, r2 = 0.6, k1 = 200, k2 = 130, p = 0.01, ε =
0.1. In Fig. 4(a), the curves in the (η1,η2)-plane divide the
parameter space into four open regions, labeled I–IV , with
qualitatively distinct dynamics.
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Figure 4: (a) Regions in the (η1,η2)-parameter space indicating
where exclusion equilibrium and interior equilibrium exist. The

horizontal and vertical boundaries separate four qualitatively
distinct dynamical regimes. Parameter values: r1 = 1.2, r2 = 0.6,

k1 = 200, k2 = 130, p = 0.01, ε = 0.1. (b) Phase portrait of
model (1) in region I, where the predator-only equilibrium (0,k2)

is globally attracting within the positive quadrant, leading to
extinction of the prey.

In region I there is no positive coexistence equilibrium;
hence coexistence between both species is not possible. Nu-
merical simulations indicate that (0,k2) is globally attracting
within the positive quadrant (Fig. 4(b)): for any positive ini-
tial condition the prey population goes extinct, whereas the
predator population converges to its carrying capacity k2.

In region II the only boundary equilibrium is (k1,0), which
is always unstable, and no positive coexistence equilibrium
with ecological meaning exists. In region III there are no
exclusion equilibrium and at least one interior equilibrium
in the feasible quadrant, which is of saddle type. Finally,
in region IV the only exclusion equilibrium is (0,k2), and

there exists at least one interior equilibrium in the feasible
quadrant, which is again of saddle type. In both regions III
and IV, trajectories approach either the predator-only state
or diverge away from the unstable coexistence equilibrium,
depending on initial conditions.

When r1 < pk2, predators can suppress the prey to extinc-
tion, preventing invasion. In contrast, if r1 > pk2, predators
are unable to exclude the prey, allowing a stable coexistence
equilibrium to emerge. These two conditions divide the pa-
rameter space into qualitatively distinct dynamical regimes.

DISCUSSION

In this paper, we examined the dynamics of a simple preda-
tor–prey system in which both species exploit a shared
resource. The model preserves the simplicity of the
Lotka–Volterra framework while incorporating exploitative
competition in an implicit form. This structure is particu-
larly useful for studying intraguild-like interactions when the
shared resource remains at a steady density, as assumed in
classical ecological theory (Schaffer, 1981). This perspective
facilitates ecological interpretation and enables a transparent
classification of coexistence and exclusion regimes.

The results show that the exclusion equilibrium Ek2 be-
comes locally stable when the reproductive potential of the
prey is lower than the combined effects of predation and
shared-resource competition, that is, when r1 < pk2 and
η1 < k1/k2. Under these conditions, the prey declines to low
density or extinction while the predator approaches its car-
rying capacity. This outcome is ecologically plausible, since
predation imposes additional mortality on the prey popula-
tion (Okuyama and Ruyle, 2003). An illustrative example
is the Argentine ant, a globally invasive species that com-
bines exploitative competition with direct predation on native
ants, ultimately driving local extinctions (Human and Gor-
don, 1996; Damas-Moreira et al., 2020). Our model captures
this mechanism: an invasive species with both competitive
and predatory advantages, often associated with higher re-
productive potential (Pöckl, 2009; Jänes et al., 2015), can
exclude a native counterpart.

Conversely, coexistence requires the opposite inequality,
r1 > pk2, although this condition alone does not guaran-
tee the existence of a positive equilibrium. For some pa-
rameter combinations, no feasible interior equilibrium ex-
ists (Fig. 2(d)), consistent with theoretical predictions that
prey persistence under omnivory may be rare (Holt and Po-
lis, 1997; Diehl and Feißel, 2000; Mylius et al., 2001; Křivan
and Diehl, 2005). Nevertheless, the model also identifies pa-
rameter regions where coexistence does occur (regions I and
II in Fig. 2(a)), supporting empirical observations that omni-
vores and their prey often persist together in natural systems
(HilleRisLambers et al., 2006; Amarasekare, 2008). When
the interior equilibrium E∗ exists, it may be locally asymp-
totically stable, thereby ensuring coexistence for a range of
biologically relevant initial conditions (Fig. 2(b)).

The relative strength of resource exploitation by each
species further determines their long-term abundances. As
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shown in Fig. 3(b) to Fig. 3(e), the ratio between η1 and
η2 controls which species is numerically dominant at equi-
librium. When η1 > η2, meaning the prey consumes more
resource per capita or exploits it more intensely, the predator
eventually outnumbers the prey. When η1 < η2, the prey
may numerically exceed or match the predator. This pat-
tern resembles coexistence mechanisms observed in marine
systems where sessile and mobile species interact through
predation while simultaneously competing for oxygen as a
limiting resource (Ferguson et al., 2013). Differential ex-
ploitation of the shared resource may therefore facilitate co-
existence even in the presence of strong antagonistic inter-
actions. From an empirical perspective, the parameters η1
and η2—which quantify the intensity of exploitative com-
petition mediated by the shared resource—could be inferred
through exclusion experiments or indirectly estimated from
consumption rates and measurements of resource availabil-
ity.

Finally, the model predicts the absence of population cy-
cles for all parameter combinations. Although predator–prey
interactions can generate oscillatory dynamics (Erbach et al.,
2013), the addition of exploitative competition suppresses
such oscillations by imposing mutually negative density ef-
fects that stabilize the system (Petren and Case, 1996). An-
other important factor underlying this result is the assump-
tion of a linear (type I) functional response, which is adopted
to focus on the dynamical effects of exploitative competi-
tion within a reduced and analytically tractable framework.
Extending this work to incorporate nonlinear functional re-
sponses, such as type II or type III, would be a natural next
step, as these can enable limit cycles and modify the con-
ditions under which coexistence is possible (Fussmann and
Blasius, 2005; Abrams and Fung, 2010).
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